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ABSTRACT

Research in the field of recommendation systems have shown that subjective preferences tend
to follow deterministic patterns, when looked at data in large sample sizes. This principle
underpins several of our present day online and off-line recommendation applications like
e-commerce , restaurant recommendation, place recommendation or music recommendations.
With the ever pervasive nature of the internet, we as a society have gone beyond treating
the online spaces as a tool to access information, and have started treating them as a natural
extension of the self. We spend more time than before as a part of a larger networked
community, exchanging thoughts, debating ideas, expressing creativity and “socializing”. We
also sometimes indulge in expression of human emotions like empathy, anger, sadness and
sometimes seeking help. On the other hand, at times we behave like crowds; participating
in entertainment and engagement channels and offering a piece of our attention budgets,
without the explicit intent of being social. But in both cases, our decisions are often governed
by our subjective perceptions of the online and offline worlds. At such a juncture, I examine
the central thesis Can we quantify properties of subjective nature, if the data is large
enough, and originates from human communities or crowds?. In this dissertation I
develop data driven methods with the aim to quantify subjective qualities, through two case
studies. I investigate the utility of said methods in designing interventions to improve the
online and offline spaces. I do so by testing the validity of the central thesis in the context
of two distinct scenarios, the first dealing with quantification of social support by looking
at the network structure of online support networks and the second with quantification of
subjective properties from crowd sourced opinions.

In the first study, I analyse on-line spaces involving networked communities where
interactions between humans are purely with the intent of helping each other. In this study,
I test the I develop frameworks to abstract out the graphical structure of these interactions.
Using these abstractions, I examine these support communities from a macro scale to
understand the signature behavioural patterns that makes these communities thrive. I then
investigate presence of perceived support by finding discriminative local and global structures
in these communities. I argue that these structures, which we call anchored motifs, are the
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signatures of a supportive exchange process in online conversations. This informs my analysis
about the nature of peer support in these communities and paves the way to do actionable
interventions in the area of perceived support in online networks.

In the second study, I investigate utility of crowd’s perception of aesthetics in physical
spaces. As such the aim is to explore the potential of crowd perception in developing tools,
to better design physical spaces. I do this by developing a pipeline that capitalizes on crowd
sourced responses about perception of urban aesthetics. I develop a deep-learning driven
framework, which is able to quantify the perception of intangible qualities like ‘beauty
of a space’ through a crowd sourced rating of google street view images. I show that a
general pattern of beauty in urban spaces can be learnt through crowd sourced opinion and
deep learning models. I further develop a generative model to simulate beautification of
urban spaces. Through a detailed literature review of the field of urban design, I develop a
measurement framework which can provide insights into the predictors of urban beauty. I
then develop the necessary tools to evaluate these metrics using computer vision techniques. I
validate the value of these metrics through an expert survey and also validate the interventions
using crowd sourced perception experiments.

Above all, in this dissertation, I contribute original frameworks and implementations for
different approaches towards quantifying subjective signals from communities and crowds.
These methods verify and validate several metrics developed for understanding subjective
properties, like perceived support and perceived aesthetics, at scale. This provides a path
forwards for A.I. driven design and curation of online and offline spaces.

⌈ ⌉
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CHAPTER 1

INTRODUCTION

There are things known and there are things unknown, and in between are the

doors of perception - Aldous Huxley - Doors of perception

1.1 Introduction

We live in a world where information is being bombarded on our cognitive faculties from

all sides, at all times. The internet is a continuous stream of information and each source is

fighting with the other to get a piece of our attention budget. With the advent of machine

learning and big-data, building systems that predict actions as a response to perceptual

triggers has become the bread and butter of many companies. The use cases may range from

understanding which adverts made a visitor do an unscheduled purchase, or which string of

music tracks recommendations maximized a users time on a particular music platform. But

in the end it all boils down to understanding what triggers result in human action or lack there

of [SDP12]. Nevertheless, the systems that surrounds a human interacting with the internet

are all designed to figure out the best triggers which are perceived by the human as worthy

of attention. Since the dawn of data driven design, the user’s attention has become such a

valuable commodity, such that the academic community has coining a term for it – “The

Attention Economy” [DB01]. In the words of Matthew Crawford “Attention is a resource, a

person has only so much of it.” [Cra15]. And this very resource has been the driving force

behind the advertisement driven internet giants like Facebook and Google.
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We live in the age of distraction, and more often than not our subjective perceptions

are guiding our actions, instead of our conscious cognitive processes. Several studies have

shown that engagement is almost always a game of stimulating our most basic urges, such

as dopamine hits, presence of faces or simply arousal of emotions to increase the working

memory [BSG14, JSR17, SFSJ06, Soa15].

On the positive side of this story, the capacity of subjective perceptions to influence

actions, is also being used to design positive interventions. One such example is the

emergence of more formal topical spaces on the internet, that facilitate providing peer-to-peer

perceived social support [Cou05, BSBMDS16] or information exchange [FM08]. The ever

pervasive nature of the internet allow these formal spaces to function almost like physical

communities, with moderated and effective peer to peer exchange of thoughts, ideas and

empathy [KGB+02, Squ15, HOG+10].

There has also been a series of studies [JK19, QOC14, QSAM15, Que15, QSA14] that

looked into whether we can quantify the perception of the physical world based on the

crowd-like behaviour of individuals online. Here crowd-like implies that there is no social

interaction between two individuals generating the interaction data. These individuals

take actions online(check-in on a platform, post a picture, tweet etc) influenced by their

perceptions of the real physical space. In these situations, their perception of real spaces is

influencing what they post or like online.

Both these examples show that in the age of the internet, our online and offline lives have

been linked more deeply than ever. Our once assumed offline personal needs, like social

support, are being addressed via online forums. At the same time, actions that we take offline

are enriching and influencing our online presence. In both cases the subjective perception

of our online and offline environment is impacting our life experience. This provokes the

question:

Can quantifying properties of subjective nature help us design impactful interventions for

our on-line and offline lives?
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This question has been the motivation behind all the works done in the past 4 years,

eventually resulting into the formation of the central thesis of this dissertation. In the effort

to pursue this question, we first need to understand what does it mean to “quantify the

subjective”, in the context of web-scale data. But first, we need to clarify the framework that

grounds this dissertation’s approach towards perception, affect and data. To do so we should

try and understand each of these terms separately.

1.2 Perception and Affect

In this dissertation, I tried to build frameworks to capture the signatures of perception of

the subjective. This was accomplished using large volumes of data and metrics designed

around concepts from inter disciplinary fields. The utility of such an attempt, can only be

justified if there is a real link between how humans take decisions at the most fundamental

cognitive level and how they perceive the world around them. If there exists such a link, then

the signatures found in the data can be explained and capitalized.

There has been an ongoing effort to unravel this link, through psychological, neuro-evolutional

and philosophical arguments. I will try to gain inspiration from them, but a detailed critique

is beyond the scope of my dissertation and expertise

Definition 1 Affect 1: Any experience of feeling or emotion, ranging from suffering to

elation, from the simplest to the most complex sensations of feeling, and from the most

normal to the most pathological emotional reactions.

Definition 2 Perception 2: The process or result of becoming aware of objects, relationships,

and events by means of the senses, which includes such activities as recognizing, observing,

and discriminating. These activities enable organisms to organize and interpret the stimuli

received into meaningful knowledge and to act in a coordinated manner.

1American Psychological Association definition.
2American Psychological Association definition.
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Emotions or ‘affects’ and perceptions have long been discussed in the psychology,

neuroscience and philosophical literature. The two are tightly linked in our understanding

of mind. Perception is a process, and affect is a result that this process sometimes evokes.

Emanuel Kant in his prolific work, first discussed the utility and the philosophical reasoning

behind presence of affects or emotions [Kan87]. In his opinion, emotions are pre-cognitive

involuntary states, termed as "mere perceptions of unspecified bodily states" [Bor04]. But

according to him, that does not mean they don’t influence our deepest level of well-being and

decision making processes. The link between affect and perception has also been explored

in several other cases. One way to look at it was through the framework of understanding

the aesthetic. In some sense, the aesthetic is an affect inducing entity. The act of enjoying a

gorgeous sunset or a beautiful flower defines a sentient perceptive mind, as much as language

or art. An argument to link the aesthetic with perceptions was made by Perlovsky [Per14],

where they propose that the phenomenon of affects arousing from perception of aesthetics,

comes from a fundamental human need to enrich the knowledge about real world. An

unexpected thing, stimuli or structure in physical space creates a dissonance between our

expected model of the world and the perceived reality. And at some level we perceive it as

aesthetically pleasing. Another recent study by Zadra et.al [ZC11] evaluated the relation

between visual perception and emotions. They demonstrate that the conventional assumption

of the disentangled functioning of perception and affects is not true. Humans are quite

susceptible to perceiving different realities based on different aroused affects. So a happy

person would perceive a 50$ shoe to be a reasonably priced item, which a sad person may

not.

The discussion on the formal definition and process of affects will continue, but there

seems to be a consensus, at-least among the computer science and information science

community that affects do influence our decisions and we perceive information through

a filter of affects. Affective triggers can be generated when information is formatted or

packaged in a certain way.

In such a setup, it is worth testing if certain affect driven interactions on the web leave

a trail of patterns in the data of these interactions. Furthermore it is worth asking if these
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Fig. 1.1 The DIKW pyramid: The four layers of the pyramid represent the four distinct
stages that the data goes through. The terms on the left hand side of the pyramid indicate the
intent which results into the transformation of one layer into another. The terms on the right
indicate the outcomes of each transformation.

patterns might in some way be used to improve, through interventions, our online and

physical environments. But to arrive at these patterns, one needs to formalize the frameworks

for approaching such a problem. The journey from data to the subjective signatures needs to

be standardised.

1.3 The DIKW model

My work in this dissertation involves building pipelines that could extract signals about

human processes from large scale data. But to make the process of building pipelines

repetitive across use cases, we need to first settle on a framework that enumerates our

intentions about the data. On the journey to develop the pipelines, one has to reflect on

frameworks that codify operations on data. One such framework, which I found most relevant

to my work, is the Data , Information, Knowledge and Wisdom model [Row07].
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The original framework was theorized to elaborate the journey between raw data and

actionable wisdom. To that end I link these pyramidal layers with the different outcomes of

the pipelines I developed during this dissertation.

With the pyramidal structure of this framework, with each layer the data gains more

structure and the relationships become more defined.

In this model, the most foundational layer consists of the pure form raw Data or signals

that come from a source. If we are measuring subjective perceptions of humans, this source

needs to be tied back to humans in some way. To that extent, the data must ideally be a product

of human to human interaction online. Or it needs to capture the human perceived responses,

through explicit exercises like crowd sourcing or public surveys. In this dissertation, I present

solutions in the context of exactly these use cases, where the data sources are either from

human to human interactions or a result of crowd based perception.

The Information layer compels any processing done on the data, to be with a sense of

purpose or an end goal. For example, if the goal is to understand how humans exchange

messages at times of distress, you would most certainly need to express the raw information

about sender and recipient of messages into some form of a networked abstraction. This

compulsion of goal generally forces us to choose an abstraction to structure the data into.

The abstraction preserves the organization of data, but at the same time allows information to

be operated on.

Knowledge. Defining knowledge has been an ongoing effort in the field of philosophy.

But in the context of information science, knowledge involves collation of diverse sources

of information and mix of contextual information, values and metrics to deliver a coherent

understanding of the real world. For example, if you need to know the most popular user

among a social network of users exchanging messages; you would look for the most central

user in the network(abstraction) along with several other temporal and structural metrics to

arrive at a few candidates. In this particular case, these metrics, along with the context of the

social network’s design, dawns the meaning of “popularity”.

The final layer requires a literature driven approach that links the outcomes of the previous

layer (the metrics), with a defined set of concepts and vocabulary in the field of intervention.



1.3 The DIKW model 7

The very act of gaining insights using these metrics is what we can call wisdom. In order to

maximize impact of this process, we need to make sure that we are able to reliably map the

metrics that we design onto a set of literature backed vocabulary in the field of practitioners.

In our example, let’s assume we need to get some insights about the dynamics of popular

users. Particularly in the context of optimizing advertising delivery. For example we need

to understand how a particular piece of advertising might percolate through the network

if certain popular users advertise it [LS12]. However , to arrive at these insights we need

to be grounded in the vocabulary of epidemiology, network physics and depending on the

application, advertising or meme theory. Then using the abstractions of social networks and

the metrics derived from them, one can design a pipeline that maps the metrics onto concepts

like “virality” , “influence” or “contagion”.

This pyramidal approach inspires all the frameworks and data processing pipelines I

developed in this dissertation. Figure 1.1 shows an illustration of the adopted version of

Rowley’s DIKW model, which I would refer back as a repeating motif throughout my

dissertation.

1.3.1 Data

Data is one of the most fundamental contribution of this dissertation. To develop frameworks

around quantification of human perceptions, so that we can do impactful interventions,

we first need to make sure we formalize how we acquire, clean and condition our data.

The foundational level of this pyramid is the data that the framework would work with, in

order to ascend towards extracting wisdom. I worked with diverse forms of data such as

textual data , video data and image data to understand how these might exhibit signatures

of human perceptive processes. The relation between data and subjective attributes needs

to be examined using some proxy such as interactions on a post, votes or engagement. For

this reason, my research involved collecting data from sources where either human to human

interactions happen, or the data is generated on account of a human expressing their opinion

about a subjective quality, like in case of crowd based perceptions.
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Interaction Data

The first case study of this dissertation focuses on online support communities, where human

to human interactions which express support, are at the centre. It has been shown through

several studies in medical informatics, that these communities play a very important role in

providing support and respite in times of distress [AVKR16, MC12, PS15, BC11, IABS+17,

HBCF16]. The communities are especially helpful when it comes to people suffering from

long term illnesses or mental health issues. The key element that impacts the users is the

perceived social support [Nam11], which delivers people in distress a sense of belonging to

a group and a sense of empathy from the fellow supporters. To understand how users on

these communities perceive social support, I work with data acquired from online health

forums, where users share, give support and ask for support. I look at communities that deal

with long term conditions like Lung illnesses, and communities where mental health patients

seek support [JSC+18]. The data spans across a duration of 10 years, containing peer to peer

support interactions of more than 30,000 users. I also crawled a popular forum based social

network called Reddit 3 to acquire a peer to peer support data regarding mental illness and

suicidal thoughts. The data covers discussions around more than 30,000 calls for support,

and includes the complete structure of the way people respond to these calls.

Image data

The other facet of my work looks at the problem of quantifying our perception of physical

spaces. Whether a street is considered beautiful is a matter of subjective opinion. And yet

research has shown that there are specific urban elements that are universally considered

beautiful: from greenery, to small streets, to memorable spaces [Ale77, QOC14, SSH13].

These elements are those that contribute to the creation of what the urban sociologist Jane

Jacobs called ‘urban vitality’ [Jac61]. Apart from vitality, these motifs in urban environments

are also highly correlated with feeling of well-being, health and safety [KK89]. There have

been studies where people have tried to use crowd sourcing to acquire subjective ratings of

3www.reddit.com

www.reddit.com
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images [SPM15] which have shown some reasonable progress on this front. But the real gap

in these studies is understanding the impact of urban elements on the perception of these

subjective qualities. E.g. How much does presence of a green garden affect the subjective

rating of beauty for that particular area? For this reason, I work with google street view data

and crowd sourced subjective ratings of various places around the world [NPRH14], with the

aim to understand how people perceive the sense of beauty in urban areas. Then using the

semantics of urban design and architecture, developed by a detailed literature review, I aim

to develop machine learning pipelines that can suggest interventions to change perceptions

of physical spaces.

1.3.2 Abstractions

The act of aggregating information from data, almost always involves building structured

abstractions. Throughout my dissertation, I either repurpose well known abstractions in

computer science or develop my own using tools from fields like computer vision and

Information theory. For the first study, I incorporate user meta data and the textual data

of their activity, to build organized networked abstractions representing the conversation

structures on the support forums. I use these abstractions to evaluate global and local

structures in support communities, which would be discussed in detail in Chapter 3 and 4.

While working with image data, I use several pixel level abstractions to segment and

group semantically similar pixels. I also use several state of the art object and scene

detection algorithms, to extract semantic information from an image, with the aim at analysing

correlations with the perception of subjective attributes of images with these metrics. I also

use deep convolutional networks and generative models, to abstract out a representation of

beauty. There will be a more detailed discussion of these abstractions in the later chapters

(Chapter 5 , Chapter 6).
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1.3.3 Knowledge

For extracting knowledge, we need to first associate meanings to certain computable metrics

that we obtain from the abstractions. As discussed in the previous example, it could be as

simple as associating the property of “popularity” to the metric of centrality. In this work, I

developed several such metrics which related subjective properties with measurable structures

in data. These structures could be in the form of topological motifs in the interaction graphs,

or in the form of patterns in images. Some of these metrics are based on intuitions which I

validate, and some based on extensive literature survey. To give an example, I develop the

concept of anchored triads, which combines local structures in interaction graphs of users,

with the positional parity of a user in the conversation. This helps me understand how a

group of people behave around a person in distress in a supportive conversation, as against a

general conversation.

1.3.4 Wisdom

Finally the wisdom underlies insights that come for experience. The experience could come

simply from the scale of data or from cross disciplinary literature that puts forth theories

of subjective experience. E.g. The theory of social support puts forth four categories of

social support 1)Affective/Perceived 2)Instrumental 3)Informational 4)Networked [CS92].

Each type has its own specific traits. My dissertation looks at these theories from the lens of

computational social science and networks science to develop metrics and methods to partly

quantify signatures social support.

1.4 Research Thesis and Research Questions

To make any progress towards answering the guiding principle as articulated in 1.1, we first

need to make progress towards quantifying the subjective. Hence the overarching central

thesis of interest that I would explore through the two case studies is:
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Can we quantify properties of subjective nature, if the data is large enough, and

originates from human communities or crowds?

But this thesis question is quite open ended, and answering it in a generalized manner

seems impractical in the scope of one Ph.D. For this reason, I need to first contextualize my

work in the realm of practical applications, by deriving more focussed research questions,

such that I can acquire data and test my hypothesis in an effective time bound manner. More

so, to drive maximum impact, I would like to focus on applications which have the potential

to have real world consequences, either through interventions or through inspired interest in

the field.

1.4.1 PART 1 : Interactions on support communities

Humans are social animals in every aspect. The presence of social support systems in

ones lives have shown to have huge quantifiable benefits. From speeding up recovery

in cases of post-partum depression or in the cases of cancer survivors [CDSLS93, DS84,

BCH+90] , to signs of positive turn around among patients suffering from alcoholism and

depression [PFR+00, BAH+86], social support is a key predictor of positive prognosis for

patients under distress. With the advent of internet, a lot of communities have sprung up,

which provide a rich platform for patients to interact, exchange support as well as provide

a perceived sense of community. These communities are moderated, only to an extent to

curb toxic behaviour, but other than that are largely free form. Due to a very homogenous

membership, where most members have either gone through or are going though similar

distress, there is an emergent sense of support and affective empathy [DSSBSM16]. The key

idea of this case study was to quantify the signatures of social support in the behaviour

and interaction patterns on these support communities

Social support, or perception of help received from others, is a widely studied as

a psychological resource used to cope with distress. The social support is generally
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classified into one of the following categories viz. Informational, Tangible , Network

or Emotional(affective) [CS92]. These categories measure the nature of social support along

the idea of exchange of resources between the person in distress and the one providing

support. For example, an informational support interaction could involve pure exchange of

valuable information about dealing with an issue. Whereas as network support interaction

could purely allow the recipient to acquire a wider network of people. In the part 1 of my

thesis, I would like to quantify the nature of perceived social support from the structure of

the dialogue and interactions between people. I conjecture that in doing so, we can tease out

the signatures of network and informational support in online communities.

Despite the highly specific nature of support communities, they have been succesful

in maintaining their relevance. In such a context, it is highly valuable to examine the

dynamics communities and understand the macro level behaviours of the users. Moreover,

it is worth understanding how the interactions on these communities differ from generic

interactions on the web. The discriminative differences are what I call signatures of support.

Quantifying these signatures would facilitate these communities to be better poised to tackle

any disturbances in the dynamics of social support. These signatures would also help us

quantify the net utility these communities in terms of delivered informational or network

support. With this in mind, I formulate the following research question for my first case

study.

RQ1 What dynamics of support communities help them thrive?

RQ2 What differentiates users on support communities from generic ones?

RQ3 What differentiates interactions on support communities from generic ones?

In order to make progress on these questions, I first had to collect data from two different

communities designed for online social support. The first community is dedicated for

patients suffering from chronic lung diseases, such as Asthma or Chronic Obstructive

Pulmonary Disorder (COPD). This community was moderated by self appointed moderators,

and everyone on this community was either a survivor or a patient of these diseases. This
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community allowed patients to ask questions about symptoms and home remedies and

sometimes just bond over social interactions. The second community I worked with dealt

with people suffering from chronic depression and suicidal thoughts. This community was

a safe haven for such people to vent out suicidal thoughts and get support from peers to

manage these sudden flares of thoughts of self harm.

Through these two communities, I develop a pipeline to analyse the peer to peer

interactions using abstractions derived from network science. The abstractions capture

conversation level structure as well as the global interactions in a community. This allows me

to probe the evolution of such a community both in terms of overall structure of the network

as well as conversational interactions between users. I also develop metrics inspired from

psychology and psychotherapy literature to quantify how these interactions can be qualified

as supportive or non supportive. For example, the concept of communication accommodation

theory (CAT) [CG88] prescribes the way in which three participants can participate in a

group therapy session. The metrics that measure the branching of a conversation or the

patterns in ties between 3 users (triads) align with these prescriptions.

Through a data driven analysis, I establish confidence on these metrics. Through this

process, I also report my findings about the dynamics of users on these communities and key

properties of user roles. I find that these conversations have a distinct nature when compared

against regular baseline conversations over the web, and these distinct signatures could one

day be used to curb toxicity as well as improve the support community interface.

1.4.2 PART 2 : Leveraging crowd’s perceptions about aesthetics of real

spaces

Urban aesthetics and presence of certain elements in the physical spaces that we use, have

shown to have lasting effects on our mental health[SPM17] and physical well being[BBLO01,

GCBK+05]. However, with the advent of access to large scale data and machine learning

techniques, we have a unique opportunity to quantify what exactly comprises of urban

aesthetics. In the next part of my dissertation, I aim at using the scale of the internet to try
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and improve how our cities are perceived. In part 1, the interactions between networked

users helped me understand the signatures of social support. In this part, we investigate if the

opinions of a large number of disconnected users (crowds) can help us quantify something as

subjective as the sense of beauty. In this study, I investigate the following research question:

RQ4 Can opinions of disconnected crowds help us model the perception of aesthetics in

real world?

RQ5 Can machine learning models based on crowd opinions help us improve real spaces?

RQ6 How much do the suggested improvements align with the expectations from the

literature or the practitioners?

Crowdsourcing is a method through which one could get inputs, subjective or otherwise,

about a particular set of questions from a large number of real humans using the internet.

In return the participants could be offered a tangible compensation, or in some cases, a

gamified incentive. The RQ4 motivates me to investigate if we can use crowdsourcing to

quantify how people perceive urban spaces. Research has shown that if a large number of

people could vote on a set of images, regarding their aesthetic quality, a trend emerges that

favours some objective metrics of beauty[D+08, QOC14]. Can we link these metrics to

urban elements? For this reason I work with google streetview images, where real people

vote on aesthetic value of images through a large scale crowdsourced study. After evaluating

for statistical trends in preference of aesthetic urban images amongst the voters, I attempt

to answer RQ5 by training a deep convolutional neural network model, which can discern

between an aesthetically pleasing and unpleasant urban scene with a high degree of accuracy.

Once we have a model that could “detect” beauty in urban scenes, we could then use machine

learning and deep learning techniques to understand how different urban elements relate to

the notion of beauty. I further develop a set of metrics which can explain the differences

between a beautiful and ugly image in the vocabulary of urban design. These differences
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are suggested as hints to practitioners, in order to improve an existing urban space. These

hints are given in the form of suggested changes in different popular urban design metrics,

which makes the whole process legible to practitioners in the field. I further test the validity

of these metrics, by comparing them against expectations of the literature and those of real

urban design practitioners (RQ6).

1.5 List of peer reviewed publications

I would like to list all the publications which resulted from the past 4 years of work, as well

as collaborations I was able to strike with a diverse group of researchers. The author lead

publications have influenced different chapters of this dissertation.

1.5.1 Original author contributions

List of papers (published, accepted and under peer review) which were either led by the

author or where the author had a fundamental contribution

1. Joglekar S, Sastry N, Redi M. Like at first sight: understanding user engagement with

the world of microvideos. In International Conference on Social Informatics 2017 Sep

13 (pp. 237-256). Springer, Cham.

2. Joglekar S, Sastry N, Coulson NS, Taylor SJ, Patel A, Duschinsky R, Anand A,

Evans MJ, Griffiths CJ, Sheikh A, Panzarasa P. How online communities of people

with long-term conditions function and evolve: Network analysis of the structure and

dynamics of the asthma UK and British lung foundation online communities. Journal

of medical Internet research. 2018;20(7):e238.

3. Joglekar S, Velupillai S, Dutta R , Sastry N "Online discussions about mental health

in Reddit exhibit signatures of supportive conversations" Under Review
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4. Joglekar S, Quercia D, Redi M, Aiello LM, Kauer T, Sastry N. FaceLift: a transparent

deep learning framework to beautify urban scenes. Royal Society Open Science. 2020

Jan 16;7(1):190987.

5. Kauer T, Joglekar S, Redi M, Aiello LM, Quercia D. Mapping and Visualizing

Deep-Learning Urban Beautification. IEEE computer graphics and applications. 2018

Sep 27;38(5):70-83..

1.5.2 Collaborative author contributions

List of papers where the contribution was significant, but were not led by the author.

Contributions from these articles are not included in this dissertation

1. Agarwal P, Joglekar S, Papadopoulos P, Sastry N, Kourtellis N. Stop tracking me

Bro! Differential Tracking of User Demographics on Hyper-Partisan Websites.In

Proceedings of the The Web Conference 2020.

2. Bhatt S, Joglekar S, Bano S, Sastry N. Illuminating an ecosystem of partisan websites.

In Companion Proceedings of the The Web Conference 2018 2018 Apr 23 (pp.

545-554). International World Wide Web Conferences Steering Committee.

3. Raman A, Joglekar S, Cristofaro ED, Sastry N, Tyson G. Challenges in the Decentralised

Web: The Mastodon Case. In Proceedings of the Internet Measurement Conference

2019 Oct 21 (pp. 217-229). ACM.

4. De Simoni A, Joglekar S, Taylor SJ, Patel A, Duschinsky R, Coulson N, Griffiths C,

Panzarasa P, Sastry N, Anand A, Evans MJ. Structure and dynamics of online patients’

communities: the case of Asthma UK and BLF online fora..

5. Young AP, Joglekar S, Garimella K, Sastry N. Approximations to Truth in Online

Comment Networks.
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6. Boschi G, Young AP, Joglekar S, Cammarota C, Sastry N. Having the Last Word:

Understanding How to Sample Discussions Online. arXiv preprint arXiv:1906.04148.

2019 Jun 10.

7. Magdy W, Elkhatib Y, Tyson G, Joglekar S, Sastry N. Fake it till you make it: Fishing

for Catfishes. In Proceedings of the 2017 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining 2017 2017 Jul 31 (pp. 497-504).

ACM.

1.6 Thesis overview

In Chapter 2, I try to contextualize my work in the two regimes of human interactions

(communities and crowds) by studying the background literature that deals within the similar

areas. In Chapter 3 (based on article 2), I examine how supportive communities evolve and

sustain over a long period of time. I show presence of an anti-rich club effect on these support

groups, which implies that experienced users are more interested in helping new comers

rather than forming a clique of their own. I define a quantitative metric for “expertise” and

show that as one becomes adept, one becomes more willing to help. All these insights point

towards answers for RQ1 and RQ2. In Chapter 4 (based on article 3), I look at structural

signatures in the interactions between users in a supportive conversations. I show that

mapping the conversational exchanges onto a topological structure, exhibits keen preference

for local supportive motifs, which I call “anchored motifs”. I discuss the utility of such

a model of support conversation and draw parallels with the offline model of community

support(Chapter 4) as per the mandate of RQ3.

In the second study, I investigate utility of perceptions of real world places through

a crowd sourced rating of google street view images. As per RQ4, I develop models to

extract the perception of the crowds using data driven inference methods(Chapter 5)(based

on article 4). I then show that a general pattern of beauty in urban spaces can be learnt

through a crowd sourced opinion and based on this finding, I develop a generative model to

simulate beautification of urban spaces by using deep learning(Chapter 6)(based on article 4
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and article 5). I validate the quantification of perception of real-world beauty using crowd

validation. I contribute a way to use computer vision techniques to abstract out beautification

process into explainable metrics used by architects and urban planners. The final contribution

is a demo web application, that allows practitioners to examine and validate the utility of such

a end to end system that captures citizen perceptions for urban design. These contributions

are motivated by RQ5 and RQ6. I close by enumerating the different research problems and

future directions that I would like to pursue(Chapter 7)



CHAPTER 2

BACKGROUND

Studying signals in user interaction data, where the interactions are driven by affective

triggers, has been an active topic of research [Pic03, PPNH07, CGHH12, AJS+13]. As such

it is worth discussing the different aspects in which the community of researchers have

explored this area. The key aspects in which I would like to place my work is in terms of

quantification of the subjective signals from data that originates from web scale applications.

The two case studies in this dissertation attempt to quantify two distinct subjective properties,

viz 1) Social support and 2) Aesthetic perception. Here we would try to first, explore the

definitions of the concepts of social support and Aesthetic perception, and then examine the

literature for methods, models and metrics.

2.1 Part 1: From communities

There has been a surge in the number of online communities, since the rapid adoption of social

networks across the internet. The spectrum of types and applications of these communities

is as abundant as the possible subjects discussed on the internet. These communities have

become a dedicated space for online users to discuss about topical items. Often these

communities take the shape of a forum, where topical threads are started by an original

poster (OP) and a discussion commences on this post. The discussions could be in the form
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of a debate1, a banter2 or a peer to peer topical discussion3. In this dissertation, we aim to

understand the nature of social support and the signatures of social support which can be

quantified from these online spaces. To that end we aim to look at forums which have been

self certified to be dedicated for hosting supportive discussions.

2.1.1 Online social support

According to Shumaker et.al [SB84] social support is defined as "an exchange of resources

between two individuals perceived by the provider or the recipient to be intended to

enhance the well-being of the recipient." A lot of work has been done in understanding

how social support functions and influences people in distress in the offline world. For

example, a meta review [DiM04] showed that adherence to a medical treatment is 1.74

times higher, if the patient hails from a cohesive family structure. Social support has also

shown to be a crucial factor in the positive prognosis of patients suffering from chronic

and long term conditions [SY06, PFR+00, BAH+86, CDSLS93, DS84, BCH+90]. All this

literature evaluates social support from a psychological stand point, in that, it looks at how a

patient/subject is perceiving support from its real world network (family, friends, doctors

etc.) More over most of this work uses the qualitative frameworks and tools as a way to

measure off-line social support.

Social support, or the perception of help received from others, is a widely studied as a

psychological resource used to cope with distress. Social support is generally classified into

one of the following categories viz. Informational, Tangible , Network or Emotional [CS92].

These categories measure the nature of social support along the idea of exchange of resources

between the person in distress and the one providing support. For example, an informational

support could involve pure exchange of valuable information about dealing with an issue.

Whereas as network support could purely allow the recipient to acquire a wider network

of people through the support giver or a support platform (think societies like Alcoholic

Anonymous).

1www.kialo.com
2www.reddit.com
3https://healthunlocked.com/blf

www.kialo.com
www.reddit.com
https://healthunlocked.com/blf
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The online world is very good at filling the gaps where offline support groups may fail.

That is, the online groups, if designed in the right way, could provide essential informational,

network, and at times emotional support at the click of a button. The internet makes both

information and user networks, easily accessible. The utility of such spaces can be believed

because of the evidence such as: online support groups being associated with quality of

life [IKW09, Nam11, Cou05], improved control over additions [WW09], improved triaging

with suicide ideation [CK17] and mental health issues [KGB+02].

Despite the interesting evidence, the common theme in most of these works is that they

all take either a qualitative approach to understanding online support, or a language driven

approach [DVZK+14, DSSBSM16, DSHF+17]. Most methodologies either utilize expert

knowledge to dissect what is being said on these forums, or a natural language approach

to understand the key language patterns on these forums. Either ways, the key missing bit

in this picture is understanding how and where do the individual users fit in. How do they

help in keeping the entire support community functioning. More over, we do not have any

understanding about the structure of a supportive conversation online from the perspective

of a user in distress. This is especially interesting, since there are obvious offline markers

of a supportive conversation, whether it being a group, or a peer to peer setting. Not just

that, but there are several therapy strategies like Communication accommodation [CG88]

or group psychotherapy [Yal95]. So it is worth investigating these aspects of online support

communities.

For this exact reason, RQ1, RQ2 and RQ3 would make progress towards understanding

the dynamics, local and global structures of online support communities.

2.1.2 Social networks, support, and metrics

Modelling and studying online social networks, through the lens of complex network theory

and network physics has been an active area of research since the 1980s. The idea of

looking at (offline) social structures as social networks was quite prominent in the fields of

sociology [Sco88], but the most important leap in this field came with the advent of online

social networks. This opened up new doors in measuring and understanding how humans
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form networks, and do so at scale through the medium of online networks [MMG+07]. The

first of these works [MMG+07] explored the idea of looking at large scale user graphs to

measure and evaluate a lot of big picture attributes about online social networks. In that, they

measure the long tailed nature of social links, the symmetric nature of social links and the

overall sizes of connected components. A connected component in a social graph G(V,E)

) – where V are the vertices or users and E are the edges between them – is a set of nodes

{C} where all nodes {ci ∈C} have connected paths to all other nodes in {C}. The size of

the largest connected component was often used as a proxy for the connectedness of a social

graph [MSGL14, TMP12, WRP+94]. Other global scale metrics explored for understanding

social networks were degree distributions [MPP+13, NWS02, KW06], clustering coefficient

[Ops13, TOS+06] and centrality [OAS10, BMBL09]. All these metrics aim to look at how

nodes(users) in a social graph group together or how do they interact with each other as the

size of the network increases. These insights help network physicists model how information

or a contagion diffuses in a connected community. However , despite the large number of

interesting works that look at network structure, there have been limited progress in using

these tools to understand the nature of social support in online networks.

In the offline world, there have been some studies that look at the ego network of a person

of interest, to infer the nature of social ties they have. In that, they look at the transitive

nature of social networks around a person [GCL09, HL71, LCB01]. This means, how many

friends of a person, are friends among themselves. A completion of this triad – which implies

that friends of my friends are my friends – is called a triadic closure. In the online world,

the theory of social capital and triadic closures were operationalized in terms of triadic

census [Fau07, Fau08]. The census simply profiles any given network by counting individual

instances of the individual sub-graphs made of two, three, or in some cases four nodes. These

sub-graphs are called motifs. The importance of triadic motifs in social network research has

been stressed so much so that in the words of Holland and Leinhardt [HL77]

“The essential issue of any notion of structure is how the components are

combined, not the components themselves...this issue amounts to the proposition
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that the lowest interesting level of structure...is the level of triples of nodes—the

triadic level”

From the studies discussed here, the link between human to human interactions and their

emergent network structure are quite evident. For this reason it is natural to extend this link

to explore how perceived social support manifests in these interactions. In this dissertation,

I aim to first quantify how network structures in support communities evolve, and second,

discover the signature structural properties of these interactions over support communities.

2.2 Part 2: From crowds

The second part of the dissertation explores new methods to use crowd’s opinions, in

order to build models of our subjective perception of urban spaces. The idea of using

crowd based annotations or opinion mining has been popular and has been exploited in the

recommendation systems literature for a while. Here I would introduce some background

about the idea of crowd sourcing, how it applies to quantifying the subjective, and how it has

been used to understand urban spaces and cities.

2.2.1 Crowd sourcing and the subjective

Crowdsourcing has been an important part of the computer science research for the past

decade. The idea of crowdsourcing was first brought to attention by Jeff Howe [How06],

where he introduced the idea of a logical equivalent of outsourcing – which is sending the

jobs outside an area, where labour prices are competitive– but for more transactional and

atomic tasks. This idea was quickly adopted by the academic community, right after the

inception of services like Amazon Mechanical Turk or Crowdflower [PCI10].

The natural extension of this new method was to use it for annotating large quantities of

data. These annotations generally dealt with labels of objective nature, such as objects [VPR13],

relationships between objects [KZG+17], or annotating textual data like named entities [FMK+10].

The key idea behind crowdsourcing is to get a cognitive input about unlabelled data

by incorporating opinions of hundreds of “crowd-workers” exchange for money. This is
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done in order to annotate the data with the most accurate objective labels, that come from a

human annotator. This data then becomes the training set for a downstream machine learning

algorithm . These algorithms would then learn the task of classifying unseen data into their

respective correct labels.

But the very fact that a cognitive process is at the root of the annotations implies that

this framework can even be applied to subjective properties, provided that the annotators

can arrive at a consensus, and we have large enough samples. The most appropriate use

case is that of annotating expressions or affects of humans in videos or images. Despite

the subjective nature of perceived affect, most neuro-typical humans tend to agree on what

constitutes the expression of anger, sadness, happiness , disgust etc. In that spirit, several

studies [TMM16, KAH+16, KV16] tried to build machine learning models that could detect

emotions from facial expressions, using data annotated by the crowd.

Apart from building a model of human affects from faces, crowdsourcing was also applied

to the area of quantifying the actual affective stimuli in content. That is it tries to quantify

the intangible property of a content that stimulates evocation of a particular emotion in the

consumer of that content. For example, it is worth asking “Which emotion does an image of

a sunset evoke in the human seeing it?”. This question goes one level deeper by trying to

quantify that which evokes positive or negative sentiments. To that end Sentibank [B+13]

explored this idea by training a deep learning model on Flicker images which were annotated

for evoking positive or negative sentiments. The same team extended it to analyse how the

evoked emotion changes as a function of culture and language [PRT+16]. Indeed they found

that these evoked emotions are also dependent on the language, culture, and other social

properties of the annotator. Although these works exposed some limitations in the approach

of quantifying the subjective, they also showed that by and large, these techniques work if

the data is large enough and there is considerable consensus among the annotators on the

topic of the annotated subjective property of the data.
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2.2.2 Crowds and the cities

So far, the most detailed studies for quantifying the perceptions of urban environments

and their visual appearance have relied on personal interviews and the observation of

city streets: for example, some researchers relied on annotations of video recordings by

experts [SR04], while others have used participant ratings of simulated (rather than existing)

street scenes [LH12]. But since the advent of services like the Google street view and Open

Street Map, the Web has now been used to survey a large number of individuals. Place Pulse

is a website that asks a series of binary perception questions (such as ‘Which place looks

safer [between the two]?’) across a large number of geo-tagged images [SSH13]. In a similar

way, Quercia et al. collected pairwise judgments about the extent to which urban scenes are

considered quiet, beautiful and happy [QOC14] to then recommend pleasant paths in the

city [QSA14]. Another study [SPM15] presented the annotators with a 10 point scale, which

they would use to score a place(Street view) for its aesthetic beauty. All these studies relied

on the crowds, in that the annotators were completely disconnected from each other, and their

ratings were purely based on their exposure to the image or an urban scene. An important

caveat here, as in case of multi lingual sentibank [PRT+16], is that the cultural and social

background of the annotator would play a role in how they perceive an urban scene. But on

average, these annotations proved very useful in understanding something as subjective as

the perception of safety, beauty, or memorability in urban spaces.

This can be indicated by the fact that lately deep learning techniques have been used

to accurately predict urban beauty [DNP+16, SPM17], urban change [NKR+17], and

even crime [DNVZ+16a, AERA14]. Recent works have also showed the utility of deep

learning techniques in predicting house prices from urban frontages [LSSGR18], and from a

combination of satellite data and street view images [LPR19].

All the studies discussed above were successful in quantifying the subjective properties

of an urban scene using predictive machine learning models. But there is a significant

gap between predicting and explaining the prediction in order to guide interventions. This

explainability problem is prevalent in almost all applied machine learning systems. In this
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dissertation, I attempt to make some progress on the front of explaining the reasons behind

perceiving an urban scene beautiful or ugly. These explanations also come in the form of

urban design metrics, which can guide interventions from the practitioners of this field.

2.3 Discussion

The title of my dissertation enumerates the two regimes –communities and crowds– under

which I explore the problem of capturing the signatures of perceived subjective properties,

using customized metrics and models. The over arching thesis has always been understanding

how human perceptions guide our actions on the web scale, and how these actions leave

behind traces of the subjective triggers.

In the following chapters, I will discuss the different methods, metrics, and models that

are developed in order to make progress in answering the central thesis of this dissertation.



CHAPTER 3

FROM COMMUNITIES: THE ACTORS OF ONLINE SUPPORT

”The original idea of the web was that it should be a collaborative space where

you can communicate through sharing information... In an extreme view, the

world can be seen as only connections, nothing else.“ - Tim Berners Lee[BLF01]

Attention budgets pretty much govern how we as consumers interact with online social

networks. It has been shown that the dearth of this budget, promotes an engagement

behaviour that prioritizes perceptive features and immediacy in the content [JSR17]. The

scrollable user interfaces of platforms like Instagram and Facebook, allow mere seconds to

decide whether a particular content is worth the user’s attention [Eik17].

However, there is a whole breed of online social networks, which aim at bringing the

offline sense of networking, online. These networks are mostly designed around a specific

purpose like technical discussions1, subject specific questions2 or simply around hobbies like

knitting3 or art4. These communities embody the true essence [BLF01] of the internet, in

that they strive at making geographical distance secondary, to the act of social networking

and information sharing.

1www.stackoverflow.com
2www.stackexchange.com
3www.ravelry.com
4www.artween.com/

www.stackoverflow.com
www.stackexchange.com
www.ravelry.com
www.artween.com/
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3.1 Introduction to online social support

According to the seminal work by Shumaker and Browne [SB84], social support is defined as

“an exchange of resources between two individuals perceived by the provider or the recipient

to be intended to enhance the well-being of the recipient.”. In the context of online spaces,

the definition prescribes exchange of messages and information, in order to provide support

to the recipient.

This exchange has been explored in detail in the field of computer mediated support [Cou05,

WSUW95]. The main idea of understanding computer mediated communication is to zoom

out from the message level interactions between users, and look at the actual “tie” between

them. A tie connects a pair of actors by one or more relations. Pairs may maintain a tie based

on one relation only, or they may maintain a multiplex tie, based on many relations, such as

sharing information, giving financial or psychological support [GHW97]. Thus ties also vary

in content, direction and strength. Ties are often referred to as weak or strong, although the

definition of what is weak or strong may vary in particular contexts [MC84].

A lot of qualitative work has been done on understanding the dynamics [WBWB03,

CK17] and utility [Nam11] of online social support. But most, if not all, studies looked at the

content and thematic aspects of the supportive posts on these forums. But the key strength of

online support communities is their networked collection of users, volunteering to provide

online support. Some examples of such communities are r/SuicideWatch5, r/Depression6,

Elefriends 7. These communities are apt Petri dishes to study the structural signatures of

the online social support networks. Once you could quantify the social support signatures

in terms of computable metrics, platforms could then empower the participants of these

communities and design interventions to curb negative behaviour like trolling.

In the context of this dissertation, I wanted to know how signatures of a perceived entity

like social support, manifests on these formal social networks. This resulted in a framework

5www.reddit.com/r/suicidewatch
6www.reddit.com/r/depression
7https://www.elefriends.org.uk/

www.reddit.com/r/suicidewatch
www.reddit.com/r/depression
https://www.elefriends.org.uk/
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that uses a set of network metrics to measure the dynamics of support communities and the

importance of individual actors for the health of this community.

This framework could bear significant potential impact on the problem of measuring

health and utility of online forums.

3.2 Primer on online health communities

Recent work has proposed that online communities have the potential to influence health

and health care sectors. Recent studies have suggested that the participation of people with

long-term conditions (LTCs) in online communities (1) improves illness self-management [AVKR16],

(2) produces positive health-related outcomes8 [MC12, PS15] , (3) facilitates shared decision-making

with health care professionals [BC11, IABS+17], and (4) may even reduce mortality [HBCF16].

There is also evidence that self-management support interventions can reduce health

service utilization [PRS+14, TPE+14]. This is especially a crucial point as the world health

services are facing the brunt of an ageing population.

Online communities have experienced an upsurge in popularity among people with

chronic respiratory conditions such as cystic fibrosis [KM16], asthma [SLM+11], pulmonary

hypertension [MMA+13] and chronic obstructive pulmonary disease (COPD) [WB13]. More

than 15 million people in England suffer from a long-term condition or disability, and they

account for at least 50 percent of all general practitioner appointments9. Thus, assessing how

these online communities function, evolve and provide perceived support, can have important

implications for health care sector. More so, understanding the dynamics of these online

communities, have actual repercussions on how the platforms that host them, could become

a better resource of self-management of LTCs.

On average, one in four people with an LTC who use the Internet tries to engage online

with others with similar health-related concerns [Fox11]. In particular, it has been suggested

that the value of participating in an online community lies in the possibility of gaining access

to a range of people and resources quickly, easily [AH00], and anonymously [PS15], as well

8https://bit.ly/2FLcs1F
9https://bit.ly/2EVFs9v

https://bit.ly/2FLcs1F
https://bit.ly/2EVFs9v
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as obtaining tailored information and emotional support [AFGG15, DSHF+17, SC16, Cou05,

DSSBSM16]. However, most of this evidence comes from qualitative studies, whereas only

recent years have witnessed an increasing interest in quantitative assessments of online

communities as intervention mechanisms.

The potential future integration of online health support systems with formal health

care provision should be underpinned by a better understanding of how they are used

and by evidence of their effectiveness. Indeed, as suggested by the Medical Research

Council [CDM+08], integrating online support systems with the more traditional health care

provision would require the identification and comparative assessment of potential alternative

intervention mechanisms.

With the clarity on the importance of online health forums for people suffering from

LTCs, this chapter investigates the role of individual users and the inter-user exchanges in

keeping an online health community functioning. We would like to know whether there

are particular users who play crucial roles in the communities. What are some peculiar

behaviours which differentiates users on support communities for others?

With this context, we aim to answer the RQ1 and RQ2, which are:

RQ1 What dynamics of support communities help them thrive?

RQ2 What differentiates users on support communities from generic ones?

3.3 Dataset

This study was carried out in collaboration with HealthUnlocked10, the online forum platform

that hosts the Asthma UK and British Lung Foundation communities. The data was

aggregated, anonymised, and shared after proper Institutional Review Board and ethics

approvals were taken to protect user privacy. The data was collected from registered users,

who can choose to either write posts publicly or send private posts to one another. In the

latter case, posts are shared between 2 users only, whereas when posts are written publicly,

10http://www.webcitation.org/70Y10rppl

http://www.webcitation.org/70Y10rppl
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a large number of users can become connected through threads of posts. In this study, I

do not consider private posts. A thread is a series of posts made on one root post (RP), as

a response to the root, or as a response to one of the responses to the root. This tree-like

structure of posts can evolve indefinitely between posters and responders. For this study, user

identifiers (IDs) were anonymized by the HealthUnlocked platform, and no demographic

information was collected. The dataset included posts and their metadata (ie, the anonymized

user ID numbers), user roles (eg, user, administrator, or moderator), date of posting, the

hierarchical level of the post within the corresponding thread, and the dates on which the

users joined and left the community. A sample of one such post can be seen in table 3.2. Both

communities were moderated, and HealthUnlocked moderators (identified through metadata

field "Role") were included in the analysis to assess their contribution and compare it with

other users. Online communities on the HealthUnlocked platform benefit from additional

functionalities compared to other online forums, such as built-in patient groups that moderate

the content. In particular, the content accessed by users is tailored to their interests, and

profiles highlight users’ condition, chosen community, medications and treatments they use

or find interesting. No data were collected on participants’ characteristics, though only people

declaring themselves to be older than 16 years were permitted to create an account and take

part in the online communities. Table 3.1 summarizes the salient features of the dataset used

for this work.

The datasets span, respectively, 10 years for the Asthma UK and 4 years for the BLF

communities (see Table 3.1).

Despite the shorter time span, as a result of the larger number of users, the number of

posts in the BLF community was higher than in Asthma UK, namely 875,151 compared to

32,780 respectively. Moreover, BLF users wrote a higher number of posts per user and were

connected with a higher number of other users when compared with people in the Asthma

UK forum (see Figure 2). In both communities, 60%-70% of registered users wrote no posts

(ie, they were lurkers). Users who wrote more than one post contributed with a median

of 8 (range 2-8947) and 5 (range 2-1068) posts in the BLF and Asthma UK communities,

respectively.
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Dataset Properties
Property AsthmaUK British Lung Foundation
Time span of data 02/03/2006-06/09/2016 13/04/2012-06/09/2016
Total Time (weeks) 548 230
Total number of posts 32,780 875,151
Percentage of posts with
at-least 1 reply

87.3% 93.1 %

Total number of users 3345 19,837
Users who contributed > 1
posts (%n)

722 (21.6) 6628 (33.4)

Users who contributed exactly
1 post(%n)

331 (9.8) 1186 (6.0)

Registered users who never
posted (ie, lurkers), n (%)

2292 (68.5) 12,023 (60.6)

Number of posts per user,
µ(σ)

14.2 (55.0) 66.9 (75.1)

Number of posts per users
who posted >1, median (min -
max)

5.1 (2-1068) 8.0 (2-8947)

Number of posts per users
who posted >1, mean (SD)

20.4 (65.6) 88.1 (458.6)

Posts contributed by top 1%
users by activity, n (%)

10,457 (31.9) 426,198 (48.7)

Table 3.1 Salient statistics for the data acquired from AsthmaUK and BLF forums.

The number of official moderators among the highly active users was negligible; there

were no moderators in the top 5% contributors to BLF and only 2 in the top 5% for Asthma

UK. Thus, our network analysis predominantly reflects content originated from registered

users. This also means that moderators on these forums have more of an observatory role

and do not engage in active support.

When classified according to posting activity (ie, number of posts written to the forum),

the top 5% users contributed to a substantial proportion of all posts: 58% and 79% in the

Asthma UK and BLF communities, respectively. In the context of this thesis, Superusers

were those who made high number of connections (exchange of messages) with other users

across the lifetime of the community.
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Field Sample Value
Body "5 years ago i was diagnosed with emphsyma asthma and

copd after being rushed into intensive care. Since then ive
had the inhalers and tablets but never really been able to
talk to someone about my experiance so any help or advice
would be very much apprieciated i have felt very lonely and
frustrated at times with this complaint as getting used to not
being able to do what i could is the worst part. I am 58 and
always thought i knew about life but im lost with this. It
seems my life is all about thinking of how i am going to be
feeling when i get up in a morning."

AuthorId VVpb (anonymised)
Title "What is breathe easy?And any advice on copd please"
SuperRecipientAction "N/A"
Action Level 0 post
ThreadId q5XXV
Date 2012-06-09 09:53:15
PostId q5XXV
Recipient N/A
Role N/A

Table 3.2 An example of a record from Health unlocked British Lung Foundation forum. The
fields describe meta data about the post, such as timestamp, PostId, AuthorId etc. The data
also contains the main body of the post as well as meta information about the conversation
structure. In this case, the post is a root level post. Hence the recipient field is "N/A" and the
Action field contains "Level 0 post".

3.4 Graphs and their metrics

To understand the dynamics of these communities and their interaction structures, I convert

the data from all the exchanges of messages between users into graphs. In these graphs

the users are represented by nodes and messages are represented by edges between users.

More formally imagine a directed graph G(V,E) involving a set of users Vi∀i ∈ N where N is

the total number of users interacting on a health community. For every message exchanged

between a user i and a user j we create an edge Ei j. By this method the complete community

would form a global graph based off total interactions between all pairs of users, which we

call a global graph Gg. Similarly we may decide to only consider the users which exchanged

messages on one particular thread. Such a graph is called a thread graph Gt .
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(a) (b)

Fig. 3.1 Global graphs prepared from Asthama UK community3.1b and BLF community3.1a.
The size of the node corresponds to the degree of the node and the color corresponds to the
community membership

These graphs abstractions (Gg and Gt) represent the interaction structures which we

intend to dissect. To understand the behaviour of these users, I evaluate several metrics on

these graphs in order to understand the utility of these communities in terms of activity of

sharing and support.

Degree distributions and connectivity

When you have a collection of nodes, connected to each other by edges, it is worth

understanding how connected an average node is. More specifically, we would like to

know the distribution of degrees, or the amount of edges a node has, across all the nodes in a

graph. This metric is called the degree distribution of a graph, and it has been widely

used in the complex networks literature as a measure to characterize types of graphs

[MPP+13, AHK+07, LBKT08, RJC+19]. We are specifically interested the nodes(users)

who belong to the highest 1% range of degrees. These users are the ones who are most
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interactive and have established edges with a lot of other users by exchanging messages.

These users are called “superusers”.

Largest connected component

A largest connected component of a graph G(V,E) )is the largest possible sub-graph

GL(VL,EL) of G, such that each node in GL has at least one valid connected path to every

other node in GL. By evaluating the largest connected component on Gg, we can find the

subset of users in the community which form a cohesive community. Furthermore, by

measuring the effect of removal of certain “superusers” from this sub-graph on the overall

size and structure on GL, once can deduce the importance of the said users to the cohesiveness

of a community. We can also measure the characteristics of the largest component on a

temporal basis. By examining the fraction of users in a given week that belong to the largest

connected component, one can estimate the focused and cohesive nature of interactions.

Social capital and triadic closure

According to the literature, social capital is defined as those features of social structures, such

as interpersonal trust and norms of reciprocity and mutual aid, which act as resources for

individuals and facilitate collective action [CDSLS93, Col88] It is common to quantify social

capital in the context of social networks, by looking at structural holes, or unmet potential

social links in the network. This is where ties between otherwise unconnected neighbours are

filled in, sometimes called as closures, thereby benefiting the broker and the two neighbours

by adding an extra link for information to diffuse. Such mechanisms have been studied in

the sociology literature for decades. Work by Granovetter [Gra77] explored these structural

holes and proposed that they are detrimental for efficient diffusion of information and

resources in social networks. He also at times called these the “forbidden triad”, referring

to their propensity to close up in social networks. Such closures are, according to Ronald

Burt [Bur04, Bur09], necessary for information brokerage, and at times directly equate to

social capital of these broker nodes. In our case, as so much evidence has shown that the
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brokers of social support are often the superusers, we would certainly want to investigate

how these users affect the cohesion and structural holes in the graph.

3.5 How do support communities thrive ?

To answer the RQ1, it is first worth asking how the user interactions bind the community

together. We would like to know if the messaging activity is highly concentrated around

a few sets of users or is it covering a large fraction of the user base. More so, it is worth

asking if there are any special users who bear the mantle of providing support. This can be

observed from the measured metrics of the interaction graph. From table3.1, it is evident

that a minority of users are generating a bulk of data on these communities. E.g. the top 1%

users by activity contributed 32% posts to AsthamaUK community. Such level of activity

makes these users extremely important in understanding the dynamics of support on these

communities. We term these users as “Superusers”. But before looking at the role of these

superusers, it is first worth analysing the overall activity patterns on these communities. Do

these communities drive enough engagement and activity to sustain them over long periods

of time?

3.5.1 Temporal activity patterns

To calculate the activity patterns of users on these forum, we first work with the most basic

of proxies, which is the weekly/daily activity. We arrive at it by calculating the amount of

messages exchanged in a community across the whole life cycle of the data. This metric

would expose how much activity is happening on a daily or weekly basis on a particular

community. It is worth noting that this activity pattern would also shed light on how users

are engaging with the community. A continuous engagement is good for the vitality of a

community, however if a community revolves around purely functional interactions, you may

see a bursty nature of user activity across time [PB15].

Figure 3.2 shows the activity patterns on both the health communities on a cumulative

and weekly basis. It was quite evident that the BLF community was more active of the two,
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Fig. 3.2 Cumulative distributions of the number of posts as a function of time (weeks) within
the Asthma UK (A) and the British Lung Foundation (B) communities. Calendars dates are
reported below as week numbers (since the inception of the community). Panels C and D
illustrate the average number of posts per user per week within Asthma UK and British Lung
Foundation, respectively

in that, the community exhibits a consistent engagement by the users across the lifetime of

the data as well as on a weekly basis. The Asthma forum however shows a bursty nature,

despite being more than twice as old as the BLF community. One possible explanation can

arise from the nature of these two illnesses. Asthma tends to be an episodic disease, with

flare-ups in patients happening from time to time. These flare-ups are also often seasonal

in nature, happening in sync with the pollen cycles in the air [DTLB12]. On the contrary,

the British Lung Foundation forum deals with, alongside Asthma, diseases that are chronic

in nature such as Chronic Obstructive Pulmonary Disorder (COPD) and Emphysema. This
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means these patients are constantly activated and tend to engage with the community on a

more frequent basis.

3.5.2 Cohesive conversations

(a) (b)

Fig. 3.3 Fraction of users that are part of the largest component as a function of time (weeks)
for Asthma UK 3.3a and the British Lung Foundation 3.3b.

To understand the first aspect of the community’s resilience, I examine how is the

coverage of communications between the users, on a weekly basis, given that messages are

exchanged between the most active users within that week. To do so, imagine a sorted list of

message interactions over a particular time period Tk, sorted in chronological order defined

as Lk = [Ei j∀i, j ∈ N] , where Ei j is a message between user i and user j, with N total users

being active in a given time period Tk. Now imagine this time period Tk is of 7 days . I

calculate such K lists for the K weeks the community has been active. For each such list, I

induce a graph Gk(V,E) such that the nodes in V are the active users in that particular list, and

the edges in E are corresponding to the messages exchanged in the list Lk between any two

users. Now for each such graph Gk I calculate the largest connected subgraph Gθk(Nk,Ek)

such that all nodes in Nk have at least one path between them. Calculating the fraction Nk
N

would give us the total fraction of users who are part of the same conversation network for a

given week. After calculating and plotting these fractions across a total of 250 weeks for

each community, we see that whenever there is an activity on these networks, almost always,
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the active nodes belong to the largest connected sub graph. This implies that activity on

support forums is cohesive and even if bursty at times, is all encompassing with the users.

It is worth noting that as the activity on the communities increases, you see an increase in

fragmentation of the graph structure with the ratio of nodes in the Largest component dropping

considerably(See figure 3.3a and 3.3b). Which means there are concurrent discussions

happening with disjoint set of users.

3.5.3 Fragile global structure

Fig. 3.4 Results of progressive removal of superusers. Both communities collapse drastically,
in terms of connectivity, with BLF showing a marginally more resilience

Despite the exchange on a weekly basis is quite cohesive, it is pertinent to understand

the resilience in terms of user responsibility in helping, in order to examine the health of

such a community. Moreover, I want to know if the conversation network is held together by

a more or less uniform contribution of nodes, or if there is a skew in the responsibility of

nodes. This can be tested by using the sensitivity analysis methods, popular in the network

science [BDSZ16, AJB00], which measures the network’s capacity to diffuse information

as you remove nodes based on certain property. In our case, we want to understand the

importance of the Superusers, or the users who are disproportionately more active. Hence

we begin by first sorting all the nodes in the macroscopic graph G(V,E) in order of their

degrees. The degree of a node in the global graph is proportional to the diverse set of users
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that node has communicated with, over the period if the community’s lifetime. We then start

removing nodes from the top, by progressively removing nodes in increments of 1%. I then

compute the size of the largest connected component Gk and compute the ratio of number

of nodes in Gk as compared to the original global undisturbed network. Figure 3.4 shows

the performance of global graphs of both the communities to this attack. It is worth noting,

that what we observe is that a top 10% nodes by activity are responsible for most of the

cohesive connectivity of the community. This also means that the top 10% of these nodes

have the most diverse connections in terms of number of users contacted. This gives hope to

health care industry, since these nodes can act like efficient information diffusers, if used in a

targeted fashion.

3.5.4 Anti-rich conversations

(a) (b)

Fig. 3.5 Plots of rich-club coefficients for each viable degree in the respective communities.
Both communities exhibit values less than 1, indicating an anti-rich behaviour by the well
connected nodes.

The “rich-club” coefficient is a metric designed to measure the extent to which well-connected

users tend to connect with one another, to a higher degree than expected by chance [CFSV06].

To this end, for each value k of a node’s degree (ie, the number of other users a given user is

connected with), we computed the ratio between the number of actual connections between

nodes with degree k or larger and the total possible number of such connections [OCPR08].
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We then divided this ratio by the one obtained on a corresponding random network with the

same number of nodes and degree distribution (ie, the probability distribution of the degrees

over the whole network) as the real network, but in which links were randomly reshuffled

between nodes.

Formally let G(V,E) be a global graph representation of the community. Let V>k be the

set of vertices in the graph having degree higher than k. Let there be N>k such vertices having

E>k edges between them. In such case, the rich club coefficient for degree k in the graph G

is given by

φ(k) =
2E>k

N>k(N>k −1)
(3.1)

In this equation N>k(N>k−1)
2 represents the maximum number of edges possible between N>k

nodes. These coefficients are highly dependent on the size of the network, which makes them

hard to compare. So I normalize the network by comparing against a random null model

of rich-club coefficients φrand(k). This is obtained by generating an ensemble of random

networks, each having the same degree distribution as that of G, but with links randomly

placed. The ratio φ(k)
φrand(k)

, gives us an un-correlated trend about the rich-club effect in G.

Thus, the rich-club coefficients may take values lower or higher than 1, depending on

whether the real network has a higher or lower tendency to coalesce into rich clubs than

randomly expected. In particular, networks that display a high rich-club coefficient (ie,

greater than 1, are also said to show a “rich-club effect,” namely the tendency to organise

into a hierarchical structure in which highly connected nodes preferentially create tightly

knit groups with one another [MdFCC07]. .

In most previous studies the rich-club coefficient in the technical and real world networks

exhibits values larger than 1 as the degree of a node goes up. This shows a propensity to

create rich-clubs, with highly connected nodes preferentially connecting with other highly

connected nodes. Thus these networks exhibit exclusive clubs of (topologically) rich nodes,

as illustrated in previous work [ZM04, CFSV06]. What we observe however in the cases of

support communities is that in general we end up with a less than 1 rich-club co-efficient as

the value of degrees k goes up. This means, rich nodes are exhibiting an anti-rich behaviour,
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where nodes which have a higher degree prefer in engaging with new nodes with lower

degree. This implies an active information exchange from a well connected node to a sparsely

connected node, which we would expect in a supportive interaction according to the definition

of social support.

3.6 What differentiates users on support communities from

generic ones?

Once we establish that these support communities are thriving and are providing what seems

to be an active supportive environment for the users(anti-rich superusers), it is worth delving

into the analytical methods for quantifying these supportive interactions. More so we would

like to have concrete metrics that characterize a given community as a supportive one. To do

so we need to understand how are the users on these communities driven to help each other,

and whether there is a correlation between the “richness” of a user, as defined in previous

section, and its propensity to help. More so we would like to know how consistent are these

so called “rich” users in providing support.

3.6.1 Propensity to help

We would like to understand how users on support communities, as a group behave as they

become more seasoned. Fortunately, there is an approximate way for us to capture a user’s

role as a support seeker and as a support giver. As described in Section 3.3, the forum activity

consists of a root poster, asking a question to the forum board, and the members responding

to that question in a cascaded fashion. These responses, along with the original question

constitute what is called as a thread. To that end, we define the following two roles on these

communities11

11There are other ways to qualify someone as support giver/seeker, mainly using language sturcture, but here
we consider only the bare minimum requirement to be considered as one, using the position in conversation
structure
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In the context for support forums, a support seeker is a user who begins a thread by

posting on the forum, a question, or a query, to which others may respond to. Similarly a

support giver is a user who responds to any post by a support seeker.

With this in mind, I aim to model the behaviour if users on these support communities in

terms of being a support giver or a support seeker.

We first begin by calculating the average number of questions per user and answers per

user across the dataset, by finding the mean number of questions and answers posted by any

user on the forum. We consider an expected probability of answering a question by a user

as Pa as 2/3 and the probability of posting a question as Pq as 1/3. With this information we

modify the definition of “Z-score” to quantify the expertise, used by Adamic. et. al [ZAA07]

to arrive at the expression of expertise in the context out our support community.

A user has two possible actions at any given time, while interacting with the community.

They can either post a question on the forum, or answer to existing questions. The probability

of doing either actions are Pa and Pq respectively. To that end, we try to model this interaction

process as a Bernoulli process with two outcomes, having asymmetric probabilities.

Proof 1 Consider a Bernoulli process for a user to choose to answer or post a question on

the forum, with asymmetric probabilities for answering (Pa) and posting a question (Pq). For

any user i the total number of posts ni are the sum of total number of questions posted qi and

answers posted ai and ni = ai +qi For a Bernoulli process the variance for the whole forum

is given as:

σ f orum =
√

nPa(1−Pa)

σ f orum =

√
2n
3

Similarly the mean for this process can be written as :

µ f orum = nPa =
2n
3
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Zscore of a random variable X is defined as

Zscore =
X −µ

σ

Substituting the values for σ f orum and µ f orum inside the expression for Zscore we arrive at the

modified Z-score as

Zscore =
a−2q√
2(a+q)

(3.2)

Equation 3.2 depicts the modified notion of Z-score for the question answering process of our

support community. I calculate this particular metric for each user in both the communities

based on their posting history.

(a) (b)

Fig. 3.6 Scatter plots for the Zscore values for (a) Asthma UK community and (b) British
Lung Foundation community. Both communities show a strong positive correlation between
a user’s activity and their propensity to answer questions.

I then find the correlation between a users Z-score and the total number of posts a user

has done in their lifetime on the forum. Figure 3.6a and Figure 3.6b shows the results of

this analysis for both the communities. It is quite evident, that as the users become more

seasoned and post more actively, they are more likely to answer on questions rather than
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post new ones. This also implies that based on the rich club results from Section 3.5.4, these

communities are thriving not only for the “rich” users, but also for the sparse users. Users

on these communities are more open to new members and provide active support to them.

Developing metrics like this makes quantifying whether a particular community works for

the subscribers a tractable problem.

3.6.2 Superusers and structural holes

One of the key aspects of utility of any social network is driven from the social capital offered

as a result of the subscription.

Till now we looked at the global macro structural properties of this support graph using

the global graphs Gg, where we look at the user’s interactions with other users across the

lifetime of the community. But often the supportive interactions happen in a lifetime of a

single thread, revolving around a topic or query. So to examine the effect of the superusers

on the social cohesion, we correlate the total number of posts done by super users on any

given thread, to the amount of closed triangles found in the corresponding thread graph Gt .

The resultant scatter plot can be seen in Figure 3.8, where we can see a net positive

correlation of 0.44, with a very low p-value. This means there is a general trend of higher

triadic closures in a conversation, with the amount of rich user participation.

3.7 Discussion

In this chapter, we found that support communities show peculiar temporal and interaction

dynamics. RQ1 asked about the dynamics of support communities. We find that support

communities exhibit a high level of engagement and participation. The communities are

held together by the superusers. The removal of these superusers, collapses the network

structure of these communities. RQ2 asked about differentiating properties of users on

support communities. We find that the users exhibit an anti-rich behaviour. This means that

the superusers are engaging with less active users and are practising inclusion. We also find

that users on support communities progress onto being support givers from support seekers
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(a)

(b) (c)

Fig. 3.7 Figure 3.7a shows an example of closure among three nodes, where a structural hole
between a cluster of three nodes is closed by addition of the green link. Figure 3.7b shows a
thread level interaction graph showing lots of structural holes between participating nodes.
On the other hand Figure 3.7c shows an example of a thread level interaction graph where a
superusers have contributed multiple times. The graph with multiple superuser contributions
tend to have larger amount of triadic closures.

with time. The idea of perceived support stems from the fact that the user in distress is not

only getting the crucial information about the disease, but also benefits from the social capital

of the allied users. We observe that superusers tend to have a positive effect on the social

capital of a conversation, promoting more social cohesion.

There is immense value in understanding how social support thrives on the internet,

especially because of its potential to relieve the load off the ever so burdened health services.

The work till now focussed on the global interactions of support givers and seekers on a

community. It investigated the dynamics of support communities and looked at individual

user’s role in the larger scheme of things.
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Fig. 3.8 Scatter plot between the number of closed triangles in a conversation thread, with
the total number of posts done by a superuser in that thread. A positive correlation of 0.44,
with a p-value of 0 is observed. This indicates that the presence of a super user in a thread
improves the over all cohesion of that thread and closes structural holes

In the next chapter we would explore the role of the conversation structure from the scale

of an entire conversation(macro) and from the scale of the immediate local interactions in the

ego network of a user(meso). This goes beyond looking at the individual actors of support,

and quantifies the peculiar structure of a supportive conversation on the web.





CHAPTER 4

FROM COMMUNITIES: SIGNATURES OF SOCIAL SUPPORT

The global structure of social support communities allude to the fact that these communities

are exhibiting some mechanisms different from generic communities, which facilitate

exchange of social support. They also seem to have an effect on the cohesiveness of

the communities. In the previous chapter, we saw the behavioural signatures of support

groups. The utility of ‘rich’ users who are the most active and promiscuous when it comes to

responding. We also quantified the dynamic of evolution of users from support seekers to

support givers. We measured the way brokerage of superusers works in providing closures in

the conversation threads, adding more closed triangles between participants of a conversation

as superusers contribute.

These results make it relevant for us to investigate the signatures of social support when

it comes to individual conversations on the web. Quantifying how support manifests in terms

of the structure of conversation might give us more insights in how online support can be

moderated and nurtured properly as an augmented channel for the health care sector. This

may also help us with feature engineering, if we need to automate the process of detecting

and tackling online toxic behaviour.

Inspired from the DIKW pyramid, we have now experienced the transformation of raw

social network interaction data into abstractions that bring out peer to peer interaction patters

as well as the structure of dialogue between users. We have also extracted the knowledge

about emergent behaviours of users using topological metrics. In this chapter we will zoom in
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from the global perspective and look into the conversation level (macro) and neighbourhood

level (meso) structures of support.

A valid criticism of the results from Chapter 3 is that they were derived by analysing

a support community that is highly moderated. This sort of moderation is often absent

on most popular open online platforms. One such popular and open platform is Reddit1.

Reddit offers its users, anonymity, and very limited moderation. The limited amount of

moderation comes from volunteers appointed by a particular community, which is called a

sub-reddit. A sub-reddit is a sub-section of Reddit, which is a topical community, where

only topical conversation threads can be posted. Any user can subscribe and post to such a

topical sub-reddit, provided they abide by the simple rules of the sub-reddit. For example, if

a sub-reddit deals with politics, like r/politics, one must make sure that the threads posted

on this subreddit deal with political subject matters. There are several sub-reddits on this

platform that deal with peer to peer support. A few examples include r/SuicideWatch2 ,

r/Depression3,r/Bipolar4. Utility of these communities in providing support, and a place

to vent have been explored before [DD14, DCKD+16]. However, in the context of my

dissertation, I want to understand how such peer to peer support mechanisms are manifested

in the dialogue structure. To do so, I need to look at these conversation threads from an

over-all structural perspective(macro) as well as from a user-centric perspective(meso).

4.1 An argument for studying mental health forums

The new platforms like facebook and reddit have become so ubiquitous, that some research

suggests that they might be affecting our broader psychological state [CLPS12]. But on

the positive side, studies have also proposed different ways in which this medium could be

used for measuring and intervening in the matters of mental health [DCKD+16, DD14].

These platform define the way humans interact in the present age, and developing an

understanding of their effects and utility is of high importance. Reddit is one of the largest
1http://reddit.com/
2https://www.reddit.com/r/SuicideWatch/
3https://www.reddit.com/r/Depression/
4https://www.reddit.com/r/Bipolar/

http://reddit.com/
https://www.reddit.com/r/SuicideWatch/
https://www.reddit.com/r/Depression/
https://www.reddit.com/r/Bipolar/
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online communities which contains a number of topical sub-communities. On this platform,

several subreddits are specifically tailored to mental health-related topics, such as depression,

anxiety or alcoholism. These fora offer a unique opportunity to study the way people describe

or discuss their problems in their own voice. This has motivated several researchers to

probe the different aspects of support online, like language [CK17], anonymity in social

support [DD14] or risk factors [Gko17]. Recent studies have shown promising results

in modelling and measuring signals and patterns in reddit communities related to mental

health. For instance, statistical relations of mental health and depression communities with

suicidal ideation have been studied [DD14, DCKD+16]. The authors explored linguistic

and social characteristics that evaluate user’s propensity to suicidal ideation. Approaches to

classify reddit posts as related to certain mental health conditions have also been successfully

developed, showing that there are certain characteristics specific to mental health-related

topics in posts that can be automatically captured[Gko17]. Furthermore, in a study focused on

reddit posts related to anxiety, depression and post-traumatic stress disorder, the authors show

that these online communities exhibit themes of supportive nature, e.g. gratitude for receiving

emotional support[PCC18]. Positive effects in participation in such fora have also been shown

by improvements in members’ written communication[PC18]. The supportive nature of

comments in the SuicideWatch forum has also been studied by automatic identification and

classification of helpful comments with promising results[KRMH+16].

One of the most challenging, and devastating, global mental health concerns is suicide.

Suicidal behaviour includes any thoughts, plans or acts someone makes towards ending

their life. In health care services, preventing death by suicide is a priority, but accurately

predicting whether or not someone is at risk of committing suicide is difficult. Moreover, a

large proportion of deaths by suicide occur in populations that have never been seen by health

service providers. Several online platforms are used for expressing suicidal thoughts and

reaching out for support. On Reddit, the subreddit SuicideWatch currently5 has almost 94k

subscribers, and is a lightly moderated forum that is intended to offer peer support for people

at risk of, or are worried about others’, suicidal behaviour. The moderators take the intent of

5As of 27th June 2018
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peer support seriously, and are governed by guidelines that prohibits false promises, abuse,

tough love and other clinically frowned upon methods of conversations6 This setup gives us

an ideal petri-dish to measure what constitutes a supportive conversation. More specifically,

owing to the results from Chapter3, we would like to develop methods that would allow us to

understand the macroscopic and mesoscopic signatures of support. Formulating this problem

needs to follow the methodological framework discussed in Chapter 1, whereby we collect

the necessary data and device appropriate abstraction/s, to quantify how the macroscopic and

mesoscopic signatures of support in these conversations manifests. These signatures could

be captured using different metrics that signify a particular behaviour of interaction.

4.1.1 Research questions

Most previous studies have aimed at dissecting the content of posts and their characteristics in

relation to other posts. One important aspect of online communities is its supportive function

– users turn to these platforms not only to express their thoughts and concerns, but also to

receive support (instrumental or perceived) from the community. In the previous chapter, we

looked at how the supportive functions of these communities is facilitated through the super

users and how these actors influence the structure of this community. But this structure was

explored from a global perspective, where all the users on the community were networked

based on their interactions between each other. However, on a conversational level, these

interactions may manifest different structural signatures as compared to the global level.

This motivates our investigation of the networks at the conversational level by looking

at the entire conversation (macro) and at the immediate interactions between neighbours

(meso). In this chapter we would like to ask the following research question, as discussed in

Chapter 1

RQ3 What differentiates interactions on support communities from generic ones?

6https://bbc.in/24rJYQH

https://bbc.in/24rJYQH


4.2 Data 53

Terminology stands for
RP Root post which begins a new thread on a

subreddit
OP Original poster who posts the Root post for a

thread
SW The suicide watch Subreddit
FP Front page of Reddit.

Table 4.1 Notations and Terms.

To model the interactions in an online community, we represent each conversation

happening over these forums using graph-based abstractions (user graphs and reply graphs) as

described in Section 4.3. To measure global structure of these conversations, we user network

topological metrics such as centrality: which measures importance of nodes in a network

in terms of relaying information, branching factor: which measures how a conversation

fans our over time, return distance: which measures how soon do users return back to the

conversation and symmetric edges: which measures reciprocity of users in a conversation.

To measure interactions amongst immediate neighbours of the users (mesoscopic view), we

measure inter response times: which measure urgency of response to a message, semantic

alignment between messages and local interaction motifs known as Triadic motifs. These

novel motifs give an idea about how distinctive are interactions between subgroups of users,

when compared against graphs obtained from baseline conversations.

4.2 Data

Reddit is a platform where a user can create a post on a subreddit, and other reddit users

can interact by posting at different levels of the thread or by up or down voting posts.

We analyzed root posts in the SuicideWatch subreddit (SW)7, building on the work of

Gkotsis et al. [Gko17]. We crawled SW to get hierarchical threaded conversations, by

iteratively pursuing each conversation at progressively deeper levels until the whole thread

had been obtained. 8. This resulted in a dataset of 50,754 SW threads totalling in 419,555

individual posts. To provide a baseline against which to compare nature of conversations on

7https://www.reddit.com/r/SuicideWatch/
8The code to crawl reddit for threads can be found at https://github.com/sagarjoglekar/redditTools

https://www.reddit.com/r/SuicideWatch/
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Field Sample Value
Body "Distress phone lines can be a really great resource for both

you and your friend and his mom. Also Iḿ not sure if they
have this service in your area but where I live, they have
what is called the "mobile response unit" which is basically
a mobile crisis response unit of nurses, social workers and
mental health counsellor who will come to a personś house
and do a mental health assessment on them and determine
who the best course of action is from there.."

AuthorId Perrythepervypus
Destination AuthorId ETKMMMFA
Thread depth Level 0
ThreadId 2elozq
Timestamp 1409066895.0
Up votes 2
Down votes 0

Table 4.2 An example post from the SuicideWatch community. The post text is accompanied
by a timestamp, author id, number of up votes, downvotes. The post is also accompanied by
the depth at which the post occurs, which helps us to capture the conversation structure of
the thread

Graph Abstractions
• Reply Graphs
• User interaction

Macro Analysis Meso Analysis

Responsiveness, 
Reciprocity,
Centrality, 
Branching

Anchored Triadic 
Motifs

Fig. 4.1 A reddit thread is converted into abstractions (Reply graphs and User interaction
graphs). Macroscopic and mesoscopic analysis is performed on these graphs, and statistical
over- or under- representation of these metrics is evaluated.

the SW sub-reddit, we need an equally large sample of conversations from posts done on

the thousands of other non-support sub-reddits. To that end, we acquired a similar number

(49,773) of baseline threads from any other subreddit popular enough to land on the frontpage

(FP). These posts have gathered enough engagement to bubble to the frontpage, and belong

to a vastly diverse set of sub-reddits.
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Comparing the suicide watch threads with the baseline, gives us confidence over our

network metrics, and any claims made there forth. The two conversation datasets from

r/SuicideWatch and Frontpage are very similar in terms of macro statistics. For example the

median amount of responses for a Suicide watch thread were 6 and for baseline Frontpage

posts were 8. The median conversation depth (the depth of the hierarchy of the responses)

is 2 for both the datasets. The median amount of unique authors participating in a post

are 2. Owing to the long tailed nature of the datasets, we perform our analysis on threads

which have been conversed on at least 5 times. Which means we consider graphs which

have more than 5 posts on the root post. This results in our datasets to shrink to 25k threads

for SuicideWatch and 30k threads for Frontpage. We further clean the dataset, by removing

threads where the root author has deleted their user account, which is a common practice

to preserve anonymity in more controversial posts. The resulting dataset has 20k threads in

Suicidewatch and 23k threads in the Baseline.

4.3 Abstractions

To understand the dynamics of supportive conversations, we first need to formalize the

abstraction of networked conversations as well as the content posted in these conversations.

In case of forum based platforms where users interact in a nested dialogue fashion, and

original poster or OP posts a start of a thread. This thread is then open for comments by all

the community users. In case of Reddit, such a community is called a Subreddit, which is a

moderated collection of users who subscribe to it. These users may post new threads onto

the subreddit as far as the post follows the subreddit rules. Enforcement of these rules is the

responsibility of the moderators. The user who starts a thread is called the Original Poster or

OP and the headlining post which the OP begins with is called the Root Post or RP.

Reply Graphs

The first abstraction mimics directly the structure of conversation threads on Reddit. These

abstractions are called Reply Graphs. We formulate a reply graph R{P,E,W} as a thread of
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Fig. 4.2 Figure 4.2a shows a sample reply graph constructed from a real thread in SW that
contains 8 posts by 5 unique users. Each node represents a post and a directed edge is drawn
from one node to another node when the first node is a reply to the second node. Thus, for
example, Node 1 is the original post, with four replies (posts 2, 3, 4 and 5). Each node is
given a colour based on the author of the post that the node represents, and each distinct
colour represents a distinct author. Thus, from the reply graph, we can deduce that the
original poster (Red node) obtained replies from the blue, green, yellow and purple users.
In turn, the red node replied back to purple and yellow nodes ,but not to the blue and green
nodes. The entire list of directed interactions is captured in a user interaction graph in Figure
4.2b, where each coloured node represents the corresponding user who wrote a post on the
thread, and the directed edges represent the replies.

multi-layered posts in a thread in response to the root post RP in the sub-reddit. Each graph R

consists of posts Pi,Pj, i, j ∈ N , where N+1 is the total number of responses in the thread and

edges Ei j such that and edge Ei j exists i f f post Pi was in response to post Pj in the hierarchy

of responses. The weight of the edge Ei j is found by calculating the cosine similarity between

semantic vector Vi for post Pi and the semantic vector Vj of post Pj. This abstraction works

well in modeling the conversational nature of these forums. For convenience of the reader,

we present a couple of example pairs from SW and Frontpage baseline datasets in Figure 4.2
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User interaction Graphs

In this method, we represent each thread as a directed graph G{V,E,W} where V is the set of

all users participating in a particular thread and E are the directed edges which correspond to

interactions between two users Vi,Vj ∈V . The weight of each directed edge Ei j corresponds

to the average of all the edge weights between Vi,Vj ∈V in the corresponding reply graph

R{P,E,W} as described above. This means that each reply graph is then mapped to a User

graphs where the nodes are users rather than posts. Another salient distinction between the

two abstractions is that reply graphs resemble an n-ary tree and user graphs are directed

cyclic graphs.

4.3.1 Network characteristics

Figure 4.3a shows the distribution of maximum depths across all Reply graphs for SW

and Baseline subreddits. The SW threads depths have a median depth of 2 and mean of 4

compared to median depth of 2 for BL and a mean of 2.5. This shows that statistically the

depths of Suicide watch and baseline graphs are quite similar. This implies that on an average,

conversations from both communities extend to similar number of to and fro exchanges,

which translate into the depth of the tree structure.

4.4 Metrics

Once you are able to develop abstractions from the data, it becomes possible to develop

metrics on these abstractions so as to derive insights about the mechanics of support. These

metrics are then used to validate structural differences between supportive conversations

and generic casual conversations from our baseline set, and come up with a theory for links

between supportive conversations and the structure of the conversation, if we find any.
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(a) (b)

(c) (d)

Fig. 4.3 Fig 4.3a shows the distribution of maximum depths of Reply Graphs for Subreddit
r/SuicideWatch and the baseline Frontpage conversations. Fig 4.3b shows the distribution
of unique authors per thread in the two datasets. Fig 4.3d shows Distribution of degrees for
Reply Graphs, r/SuicideWatch and FrontPage. Fig 4.3c shows the degree distributions for the
reply graphs

Semantic Alignment

We then extract the word embedding vectors for each post using Doc2Vec[LM14], which

extends the word2vec [MSC+13] word embeddings to represent a whole document or

paragraph. We extract these embedding vectors for each post in RN space – where N is

the dimensionality of the embedding – for all the posts across the complete hierarchy of

threads. We then quantify the edge weights of each interaction amongst the reply tree as the

cosine distance between the response post and the hierarchically higher post, to which the

responder has posted to. This captures the semantic alignment between the hierarchically

adjacent responses. This method is quite popular and used in community based question
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answering[MN16], Medical semantic similarity [DVZK+14] and other medical informatics

applications[ZYW17].

More formally, if user Vi has responded with post Pi to a post Pj written by user Vj,

we extract the word embedding in RN for both posts Pi and Pj. If these embeddings are

represented by N dimensional vectors ψN
i and ψN

j then the edge weight for the edge Ei j in

the corresponding reply graph would be

Wi j =
ψN

i .ψ
N
j

∥ψN
i ∥2∥ψN

j ∥2
(4.1)

This metric standardizes all edge weights between 0.0 and 1.0, 1.0 implying that the posts

Pi and Pj are most aligned, and 0.0 implying the post have least semantic similarity. This

metric also abstracts out the content of the post in terms of semantics which can then be used

as edge weights in the graph abstractions.

Centrality

For this metric we use the User Graphs. Node centrality is a metric that measures how

central a node is in a network. It directly reflects the importance of the node when it comes

to membership of the shortest connecting paths between all the nodes in the graph. More

formally, we use betweenness centrality of a node which is defined as

g(v) = ∑
s ̸=v̸=t

σst(v)
σst

(4.2)

where σst(v) is the total number of shortest paths from node s to node t and σst is the number

of those paths that pass through v. To understand whether the thread starters (OP) have a

special place in the network, we evaluate both centrality of the node corresponding to the

OP, as well as median centrality across all the nodes in a user graph.
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Symmetrical users

We define a symmetric user and a symmetric edges for user graphs. For a user Vi in the user

graph G{V,E,W} as described in Section , a symmetric user is a user who interacts with any

user Vo or the OP and receives a response back from that user or the OP. We find the fraction

Usym =
total number of symmetric users

Total users in a thread
(4.3)

Urgency

To understand the urgency in how Suicide watch subreddit users responds to the OP and each

other, compared to the baseline threads on the Frontpage, we calculate differences between

the posting times between consecutive response messages in a reply graph. We then compute

the median response times per thread, for posts in response to any OP authored posts and in

general across all other post responses.

Branching Factor

Branching factor is a quantity that reflects the fan out of a conversation as it evolves. To

measure this phenomena, we use the reply graphs, which resemble a n-ary tree, to evaluate

the branching factor. The branching factor is formally described as

τ =
1
|D| ∑

d∈D

1
|Nd| ∑

n∈Nd

InDeg(n) (4.4)

4.5 Macroscopic analysis: at conversational level

Through our analysis we find several discriminatory factors among Suicide watch conversations

and generic front page conversation. We show that some of these factors are archetypal of

suicide watch conversations such that they are over-expressed in suicide watch conversations

to a very high degree. We also show that certain properties of these conversations can be

backed by sociological theories of real life support conversations.
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4.5.1 Peculiarity of threads of Support

We begin by characterizing the two networked abstractions, namely Reply Graphs and

Interaction graphs as described in Section 4.3. We do so by first comparing these two

abstractions with a baseline control conversation threads using certain macroscopic network

properties.

Responses to OP are very urgent in supportive setting

Understanding the inter message times can act as a good proxy for the urgency in a

conversation. To understand how Suicide watch subreddit users responds to a OP and

other users as compared to other sub-reddit threads on the frontpage, we calculate differences

between the posting times between consecutive messages in a reply graph. Figure 4.4a shows

comparison using CDFs of inter-message response times for SW and FP threads. It can be

seen that SW OP are responded with the highest urgency amongst the 4, especially compared

to either the OP or any other users or sub-reddits.

Interactions on suicide watch forums are statistically more symmetric

Despite signs of urgency and engagement, we ask the question: what percentage of conversations

happening on these subreddits are symmetric in nature ? For this The median value for Usym

for SW is 20% where as for FP is 0%. This shows that SW subreddit engages is a lot more

symmetric conversation that the baseline threads. If we define a set of users who engage in

symmetric activity with the OP , it would be worth while to investigate how much of the total

message activity on the thread is carried out by these set of symmetric users . To calculate this

we find the fraction of messages on each thread written as part of this symmetric conversation.

Figure 4.4b shows the trend. It can be see that SW threads contain a higher prevalence of

symmetric message exchanges compared to the baseline Frontpage threads. This shows a

higher engagement from the OPs side when participating in a supportive conversations



62 From communities: Signatures of social support

(a) (b)

(c) (d)

(e)

Fig. 4.4 This panel shows the cumulative distribution (CDFs) of Macroscopic features for
SuicideWatch sub-reddit data . These are compared with the control dataset of generic
conversations on reddit from the FrontPage. 4.4a depicts results for Urgency; 4.4b for
Reciprocity; 4.4c for OP’s centrality in an interaction graph; 4.4d for Semantic alignment
and 4.4e for Branching. SW conversations score higher on reciprocity, urgency and semantic
alignment than FP. The SW conversations tend to branch less and tend to have higher
centrality when compared to FP.

OP is the most central user in supportive conversations

To understand how embedded is the OP in a conversation thread, we compare the betweenness

centralities of OPs in the SW dataset with the baseline FP dataset. Betweenness centrality
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is a good proxy of understanding how closely linked is a node with the rest of the network.

When we calculate this metric for the user graphs, we see that Suicide watch OPs tend to

have highest centralities compared to generic FP threads both in terms of OP centrality as

well as median centrality across all the users. The high centrality of OPs in SW conversations

implies a high level of embedded-ness as well as a OP centric approach by other participants

in the conversation. The Figure 4.4c shows the Empirical CDFs of centralities.

Supportive responses are semantically aligned, more so when they are in response to

the OP

We measure semantic alignment based on word embeddings (see equation 4.1) of the source

post and the reply post, at every edge of the reply graph. The detailed method of extracting

semantic alignment along a post and its response is described in Section 4.4. Extracting

such similarity metrics, we compare the trend in semantic alignment of response text with

the parent text in the reply graphs. We find that the semantic alignment is considerably

higher in the SuicideWatch conversations as compared to the Frontpage baseline posts. The

alignment is further increased when we look at responses posted to the posts done by the OP

in SuicideWatch. This implies that the conversations of suicide watch community tend to

be not just OP centric in structure, but also tend to be more aligned to the topical content

of OP’s posts. We would expect this person centric approach in an interaction where social

support is exchanged between a helper and a person in distress, which in our case is the OP.

Supportive conversations branch out considerably less compared to baseline

Branching in a conversation thread could be either a sign of digression or a sign interestingness

resulting in more people joining in. To measure this phenomena, we use the reply graphs, that

mimic the conversation structure of the threads. By using the method described in Section

4.4, we found that Suicide watch threads, tend to branch less as compared to our baseline

conversations. This implies that suicide watch threads tend to remain on topic and more

often than not, a one-on-one conversation. Albeit many such dialogues may emerge with

many participants, and hence that explains the high centrality of the OP in all user interaction
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graphs. If the participants on a thread seldom interact amongst themselves, the corresponding

interaction graph will have the OP as the most central node.

4.6 Mesoscopic analysis: Anchored triadic motifs.

210-a 210-b 210-c

120C-a 120C-b 120C-c

120U-a 120U-b

120D-a 120D-b

030T-a 030T-a 030T-c

111U-a 111U-b 111U-c

111D-c111D-b

021C-c
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111D-a

201-a 201-b

(a)

Fig. 4.5 Figure 4.5a shows the 36 different types of Anchored Triadic motifs that are looked
for in the user graph data. The motifs with green boxes are over expressed in the baseline
dataset by significant amount. The motifs with red boxes are over-expressed in the Suicide
watch dataset by significant amount. The motifs with grey boxes are present in significant
numbers in both datasets, but neither over nor under expressed in any datasets based on their
Z scores. The motifs in grey hatched boxes are very rare in both the baseline and suicide
watch datasets, with less than 5 mean occurrences per graph per bin.

Network motifs are local sub-networks between 2 or 3 nodes. Such local patterns are

highly useful in quantifying local interactions and the resulting macro structure of the

network[MSOI+02]. They have been used in a variety of applications and networks, from

economics [ZSSH14] to cellular protein-protein interaction networks [YLSK+04]. These

local interaction patterns have been studied before, and have been fundamental in the study of

social structural processes[Fau07]. They help social scientists quantify the type of hierarchies

in the social network[Dav67, DL67].
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But in the setup of a typical support community network like SuicideWatch, the conversation

shows clear distinction between the users who respond to a call for help and the user/s who

are asking for help. In the case of Reddit we define the former as the OP who starts the

conversation thread. In this context, it would be worth understanding how OPs immediate

neighbours interact with OP in case of a supportive community like SuicideWatch, when

compared against the baseline.

For this reason, we changed the definition of the triadic motifs to accommodate the

role of a node around which the motif is developed in the conversation graph structure.

In conventional literature, the local interactions are measured in terms of census of 16

triadic motifs[Fau07], which cover all possible patterns of non-isomorphic graphs, or graphs

which cannot be mapped or morphed into each other. In this method, there is no special

treatment to any node, and positional parity of all nodes is treated equally. This means, role

of a node in the conversation cannot be incorporated in this analysis. For this reason we

extend this methodology by introducing anchors, or nodes with special importance, since

we would like to know how a graph evolves around the person in distress, which is the

OP in our case. A symmetric link with the OP implies that the OP is part of a to and fro

communication, however a triad with a symmetric link between two non-OP nodes implies

that the conversation does not involve the OP.

By fixing a role for a node in a motif, each of the 16 triadic motifs as seen and developed in

the field[Fau07, HL77], can be unravelled into 36 sub-variants of these motifs by varying the

anchored node, as seen in Fig 4.5. Each sub-variant is non-isomorphic to others in its category

from the perspective of the anchored node. The resulting motif types grow from 16 to 36,

since some of the anchored motifs are iso-morphic, which means they look identical to some

other motif from the perspective of the anchor. These motifs are then counted using custom

tweaked census methods based on Bataglej et.al’s work[BM01]. Since the anchor is important

while conducting the census, we modify Bataglej et.al’s triadic census method to return the

positional information of each node in a motif, along with the count. This then allows us

to segregate each counted triplet of nodes belonging to a given triadic variant, into their
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corresponding anchored triadic sub-variants. The code for performing the anchored triadic

census is open sourced and can be found at https://github.com/sagarjoglekar/redditTools

Each motif as seen in Figure 4.5a is named using a particular recipe. The first three

letters, follow a M-A-N pattern which signifies the number of "Mutual" , "Asymmetric" or

"Null" edges present in that particular triad. E.g. the motif 030 has 0-Mutual(bi-directional),

3-Asymmetric(unidirectional) and 0-Null(disconnected) edges. There are some motifs with

an added modifier letter (C-U-D-T) attached to further differentiate between different triad

types with the same M-A-N pattern. To this, we additionally attach a variant label (a, b or c)

to distinguish the different anchored network motifs that result from the different positions

of the OP. The naming is done in accordance with Holland et. al’s work[HL71].

To methodically understand the over or under expression of these anchored triadic motifs

in the suicide watch community, we use the user interaction graphs for the Front page baseline

posts as a control group. We analyse 10,000 user interaction graphs each for the baseline and

the suicide watch datasets. We progressively select graphs with variable sizes i.e. number of

users present in the interaction graphs. We do so by binning each dataset in ranges of graph

sizes in increments of 5 nodes per bin. The resulting graphs would fall in the following 7

bins, with increasing number of nodes present : 1 - 5 , 6 - 10 , 11 - 15 , 16 - 20 , 21 - 25, 26 -

30, 31 - 35 and 36 - 40. We stop sampling above 40 nodes per graph, as the population of

conversations that contain more than 40 unique users participating is extremely scarce for

both the datasets. We then do the census for the 36 unrolled motifs for each of these bins,

for both the datasets. Once the census is done, we calculate Zscores for the Suicide watch

conversations, using Baseline conversations as the null model, to understand over or under

expressions of certain motifs. For any given bin BI , let there be k baseline graphs that fall in

that particular bin noted by GBL , and let there be n suicide watch graphs falling in the same

bin signified by GSW . For such a setup, let MBL signify a vector of k elements, where each

element is the total number of occurrences of particular motif m in each graph from the set

GBL. With this sample of graphs as the null model, the mean would be µnull =
1
k ∑mi∈MBL

mi

, where mi is the count of motif m in the ith graph in GBL. The standard deviation σnull is

std(MBL) Once we have the null model parameters for the baseline graphs for a particular

https://github.com/sagarjoglekar/redditTools
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bin, we calculate Zscores for all the graphs from suicide watch samples GSW from the same

corresponding bin as random variable Z where the ith element is the Zscore for graph i in GSW .

The score is calculated by the following formula

Zi =
msw

i −µnull

σnull
(4.5)

where msw
i is the total number of occurrences for motif m in the ith graph for the suicide

watch samples. We then plot the mean of random variable Z and the standard error in Z to

understand the over/under expression trends.

4.6.1 Patterns in local interactions

It is often useful to express large interaction graphs, as the sum of local interactions between

two or three nodes at a time. This method is quite prevalent in the Social sciences, for

studying social structures by looking at local interaction between agents[Fau07]. Such

analysis is quite useful in expressing local structures in the graphs and has been used in

several network analysis works[WLH14, SM15]. For this reason we conduct a census of the

36 Anchored triadic motifs (described in Section 4.6) across all the selected graphs. From the

amount of over or under expression of the network motifs, researchers have made inferences

about the nature of local interaction. They do so by comparing the amount of density of each

triad in a real network as against the expected quantity in a null model based on the number

of edges[Fau07]. We perform binning of user graphs as described before in Section 4.6, and

perform over or under expression analysis in comparison with the baseline null model, using

Z-scores of the motif occurrences.

We find that anchored motif variants 021U-a, 021U-b, 111D-b, 111D-c, 201-a and

201-b are significantly over expressed in suicide watch conversations across all sizes of

graphs as seen from figures 4.6a,4.6b,4.6c,4.6d, 4.6e,4.6f. Similarly anchored motif variants

012-b and 021C-c are significantly over expressed in the null model(baseline) graphs across

all sizes.
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Fig. 4.6 This panel shows the Z-scores of the abundant and over expressed Anchored motifs
found in both datasets. There are variants which are over expressed in Suicide watch (Like
figures 4.6a,4.6b,4.6c,4.6d, 4.6e,4.6f), which form the top six plots. The bottom 2 plots show
motifs which are over expressed in the Baseline over Suicide watch, as their Z-scores are
negative. Figure 4.6g and Figure 4.6h.

From previous studies on triadic structure, it was inferred that transitive triads are naturally

more common than expected in social structures of human social networks. Interestingly,

our analysis shows that transitive triads are rarer in Suicide watch, as against the baseline

conversations. But in the defence of previous studies, the networks we study are of human

conversations and not of human social ties. Also these conversations are happening with

an intent of providing support, which makes one user (the one in distress) the centre of

conversation. These conversational preferences make the macro and meso level structural

signatures peculiar.
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(a)

(b)

Fig. 4.7 Figure 4.7a represents the median completion times of the three motifs over
expressed in SW, where the OP is at the apex (most central) position. This plot shows that as
the time goes by, the symmetric nature of interaction between the OP and those who engage
with them increases The Figure 4.7b shows a toy example of what sort of dialogue exchange
could lead to the motif lifetime distributions seen in Figure 4.7a

4.7 Conclusions and Outlook

In this chapter, we investigated RQ3, which enquired about structural differences between

interactions on support communities vs those on generic communities. We analysed this

RQ within the context of Reddit, which provides us with an optimal mix of supportive and

generic conversations. In line with the DIKW pyramid, we first developed abstractions which

could capture the structure of individual conversations. We then developed metrics that

could quantify various structural patterns in these interactions. These patterns were then

analysed using statistical tools like the Z-score. These patterns in interactions indicate that

conversations on SuicideWatch tend to be more OP centric, with non-transitive dialogues

between users who respond to a call for help. More so, the OP tends to be highly central

in the conversation as well as part of several mutual interactions. These behaviours are

highly particular to SuicideWatch when compared with the baseline conversations. Further

investigation of local structures in conversation graphs show that the supportive conversation

graphs evolve quite differently as compared to the generic ones. The OP centric attitude of
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supportive conversations give rise to a distinct set of triadic motifs, which get over expressed

by a considerable margin in supportive conversations.

Several studies have looked at the social-tie structures and shown certain triadic motifs

to be important in maintaining social hierarchy [SM15, SM12, HL76, HL71]. But these

expected structures are not the ones prevalent in supportive conversations. Transitive triads

like 030T and 210C are shown to be overexpressed in ties that show social hierarchies.

This points to a very different approach towards interactions with distressed users, and

may have great implications on detection of toxic behaviour and enabling of helpful online

conversations. Further work needs to be done in modelling these conversations. With the

advances in machine learning, both the language and the network structure could be used in

compliment to develop unique embeddings for support. A true inter disciplinary aim is to

enable use of such frameworks, to understand at risk individuals online and offline.

There are other relevant triads are not even active in supportive conversations as seen

from Figure A.0 (Discussed in Appendix 1). The most interesting ones are the motifs that

exhibit triadic closures, which have been shown to be fundamental for social capital in

networks [BDIF14, Gra77, JK19]. The absence of these motifs in either Suicide watch or

baseline graph structures indicates that the conversational graphs online evolve differently to

social graphs. This phenomenon needs to be explored further.

In conclusion, quantifying perceived social support is an ongoing effort. But my work

proposes new and computable metrics for conversation graphs which could help us quantify

the amount of social support exchanged in an online forum.

4.7.1 Implications

Online spaces are used by a diverse set of users. One of the main challenges in front of open

online spaces like Twitter and Facebook is to make them safe and toxicity free. This however

is in direct contradiction with the free and open philosophy that underpins the creation of the

internet. At such a juncture, it is worth investigating a setup where these platforms offer a

differential policy towards toxic or non mainstream behaviour online. The main challenge in

allowing differential behaviour policing, is to understand where to draw the line. My work
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sheds some light towards finding specific interactions online which are the best candidates for

policing for toxic behaviour. By quantifying the structures of peer support in online spaces,

we can enable public platforms to be allow serendipitous supportive interactions to happen,

without clamping down on their open nature.





CHAPTER 5

FROM CROWDS: REAL WORLD PERCEPTION OF BEAUTY

Beauty is nothing other than the promise of happiness – Stendhal, On Love

In part one, I delved deeper into the problem of quantification of perceived social support

through online communities. This work showed that there are quantifiable signatures of

social support in the structure of online communities, and these can be exploited to build

models of supportive and safe interactions online, which could directly benefit persons in

distress. Capturing the signatures of a subjective quantity, like the perception of social

support, through the analysis of online conversations has implications on how we design

better online spaces in the future. This feat is achieved through investigating networked,

interacting users in communities. But the question to ask is, can unconnected agents, in large

enough quantities(crowds) be used to extract signatures of subjective perceptions.

In this spirit , in the second part of my thesis, I extend the motif of perception driven

design of spaces, to the offline world. The core idea is about asking a similar question, that

is: "Can we quantify the signatures of subjective perception of the real world through

crowd opinions?".

It has been shown through multiple studies, that the physical spaces that we use have

measurable effects on our health [MVG+06, LM11], our outlook towards exercise [TGL+14],

health of seniors [TNW02] and general all round well being [GTMM+15, NPK13]. More

importantly, all these studies point to the value of aesthetically pleasing spaces for an overall

liveable city. This intuition motivates the choice of quantifying the aesthetic perception of
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real spaces. More so it motivates the question: Can crowd’s opinion help capture a subjective

quantity like the aesthetic? However, the question about whether an urban space is considered

beautiful or not is highly subjective. To that end, we need to refine the hypothesis that we

are aiming to prove. The perception of aesthetic in urban spaces are affected by location,

culture, background of the crowd member and several other subjective attributes. This is why,

I aim at quantifying what aspects of an urban scene "on an average" are found aesthetically

pleasing to the crowds.

Research has shown that there are specific categories of urban elements that are universally

considered beautiful e.g. greenery, small streets, memorable spaces, open skies [Ale77,

QOC14, SSH13]. These elements are those that contribute to the creation of what the urban

sociologist Jane Jacobs called ‘urban vitality’ [Jac61]. The idea of this work is to test the

quantifiable and predictive nature of these elements. In this section of my dissertation, I show

that this is feasible using cutting edge deep learning and computer vision techniques and

some metric design which associates meaning to the patterns in data.I use google streetview

images as the source of data for photographs of urban scenes. I use crowd opinion to capture

the predictive motifs of urban beauty. And I use literature drive metrics to explain and

quantify the urban perception of beauty. This follows that in this chapter, I would like to

answer the RQ5 of my dissertation.

RQ5 Can opinions of disconnected crowds help us model the perception of aesthetics in

real world?

5.1 Related Work

The problem of designing better cities, has been a on going obsession for various fields.

A lot of work was done in the past in just understanding the concept of good , liveable

cities. One of the most prominent figure in the campaign to re-vitalize our cities was Jane

Jacobs in the late 50s. Jacobs’s seminal work on urban vitality [Jac61] discusses the idea
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of how a design of a city might be the driving reason behind how urban vitality thrives.

Christopher Alexander was another such prominent voice who in his book undertook a

cataloguing exercise of typical “patterns” of good urban design [Ale77]. This effort showed

that certain patterns of placements of roads, trees, walkways, parks and areas of social

interactions are highly crucial in promoting a thriving social environment. In the fields

of psychology, environmental design and behavioral sciences, research has studied the

relationship between urban aesthetics [RAS00] and a variety of objective measures (e.g.,

scene complexity [KKW72], presence of nature [KK89]) and subjective ones (e.g., people’s

affective responses [Ulr83]). As mentioned before, the relation between greenery and the

design of spaces around us has been linked with measurable effects on our health [MVG+06,

LM11], our outlook towards exercise [TGL+14], health of seniors [TNW02] and general all

round well being [GTMM+15, NPK13].

With this premise, it is worth exploring the literature to understand how different fields

are working towards using this relation between the humans and the spaces they occupy.

Ground truth of urban perceptions. So far, the most detailed studies of perceptions

of urban environments and their visual appearance have relied on personal interviews and

the observation of city streets: for example, some researchers relied on annotations of video

recordings by experts [SR04], while others have used participant ratings of simulated (rather

than existing) street scenes [LH12]. The Web has recently been used to survey a large

number of individuals. Place Pulse is a website that asks a series of binary perception

questions (such as ‘Which place looks safer [between the two]?’) across a large number of

geo-tagged images [SSH13]. In a similar way, Quercia et al. collected pairwise judgments

about the extent to which urban scenes are considered quiet, beautiful and happy [QOC14]

to then recommend pleasant paths in the city [QSA14]. They were then able to analyze the

scenes together with their ratings using image-processing tools, and found that the amount

of greenery in any given scene was associated with all three attributes and that cars and

fortress-like buildings were associated with sadness. Taken all together, their results pointed

in the same direction: urban elements that hinder social interactions were undesirable, while

elements that increase interactions were the ones that should be integrated by urban planners
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to retrofit cities for happiness. Urban perceptions translate in concrete outcomes. Based

on 3.3k self-reported survey responses, Ball et al. [BBLO01] found that urban scenes with

positive aesthetics properties not only are visually pleasurable but also promote walkability.

Similar findings were obtained by Giles et al. [GCBK+05].

Deep learning and the city. Computer vision techniques have increasingly become more

sophisticated. Deep learning techniques, in particular, have been recently used to accurately

predict urban beauty [DNP+16, SPM17], urban change [NKR+17], and even crime [DNVZ+16a,

AERA14]. Recent works have also showed the utility of deep learning techniques in

predicting house prices from urban frontages [LSSGR18], and from a combination of satellite

data and street view images [LPR18].

To sum up, a lot of work has gone into collecting ground truth data about how people tend

to perceive urban spaces, and into building accurate predictions models of urban qualities.

This trove of human annotated ground truths about urban spaces is vital in understanding

human perception at scale. In this chapter we would look at a way to transfer the collective

perception of humans in to a machine learning model. Doing so we would validate whether

machine learning models can actually capture the subjective perceptions of people.

5.2 The Data

To begin with, we need highly curated training data with labels that reflect the crowds

consensus on beauty. Unfortunately, it is difficult to get data where there is a consensus on

of the crowds on an absolute value of beauty. However there are datasets available where

crowds have voted on pairwise comparisons of urban images for their relative beauty. The

two most prominent examples are from MIT media lab [DNP+16] called the place pulse and

from Bell labs [QPAC13].

We start with the Place Pulse dataset that contains 110k Google Street Views across 56

cities across 28 countries around the world [DNP+16]. The voting on these scenes is taken

in the form of a gamified interface, where two random images from this set are shown, and

the participant is asked to choose the more beautiful of the two. The interface looks similar
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Which of these two images look more beautiful

Fig. 5.1 Example of a paiwise comparison, where a user is asked to choose the more beautiful
among the two.

to Figure 5.1, where by one would preferentially end up choosing the image on the right, due

to its objectively superior aesthetics as compared to the one on the left. Over the course of

time, they gather votes on more than 1.2 million pairwise comparisons, distributed across

110k images, given by more than 81k volunteers from 162 countries, with a good mix of

people residing in both developed and developing countries. The pictures were labelled by

volunteers through an ad-hoc crowdsourcing website1. Volunteers were shown random pairs

of images and asked to select which scene looked more beautiful, safe, lively, boring, wealthy,

and depressing. To our knowledge, no independent systematic analysis of the biases of Place

Pulse has been conducted yet. However, it is reasonable to expect that representation biases

are minimized by the substantial size of the dataset, the wide variety of places represented,

and the diversity of gender, racial, and cultural backgrounds of the raters. This process, still

does not solve the problem of obtaining an annotated dataset of beautiful and ugly looking

urban neighbourhoods. For that to happen, we first need to translate these comparisons in to

some form of an ordinal ranking of images.

1http://pulse.media.mit.edu

http://pulse.media.mit.edu
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Fig. 5.2 Frequency distribution of beauty scores. The red and green lines represent the
thresholds below and above which images are considered ugly and beautiful. Conservatively,
images in between are discarded.

5.2.1 Partitioning the data

To solve the problem of annotating images in terms of beauty we need to have at the very

least, a sense of relative ranking in terms of most popularly voted to be beautiful to the

least. This approach would not quantify beauty in the absolute sense but in terms of relative

consensus, provided we have enough pair wise votes.

To solve the problem of transforming the pairwise voting of the crowd into relative ordinal

ranking, we use a popular Bayesian algorithm, used in several multiplayer gaming systems

to order leader boards called TrueSkill [HMG07]. This algorithm works by first initializing

all the players (which in our case are urban street view images) with equal “skill” (which

in our case implies a relative sense of beauty). The algorithm then assumes competitions

among the players in a 1-on-1 fashion. In the case of our work, these competitions are the

pairwise votes. Each victory results in addition of some “skill”(beauty) in the victor player’s

profile (street-view image) and reduction in “skill” in the loser’s profile. The more skillful

the opponent, the higher the rewards in update of one’s skill. With enough average number of

competitions played by each player, a steady state order of skilled players emerges. For our
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Fig. 5.3 Sample pairs of street view images ordered by lowest final skill rating on the left to
highest on the right.

dataset, we initialize all images with a “skill” level of 25 and a variance of 3, which signifies

the uncertainty in the skill level. This uncertainity would drop, as more competitions are won

or lost by any given image. For the sake of accuracy and stability, we filter only the images

which have more than 8 votes on them. This reduces our usable dataset from 100k images to

just over 20k. But having more than 8 votes, results in a steady state bi-modal distribution

of skills as shown in Figure 5.2. This allows us to order the streetview images in an ordinal

rank based on relative beauty as seen in Fig 5.3.

Despite having a consensus on the ordering of most of the images, we still end up with

some images near the initialized skill level of 25. This means the skills of these images

have not been decisively updated through the voting data. To work around these borderline

cases, we partition the distribution of images along two margins in the trueskill space. The

thresholds for partition are values less than µ −σ for the ugly set of images and values more

than µ +σ for the beautiful set of images. This results in the threshold Trueskill values of 22

and 28. We select all images with a Trueskill value less than 22 and assign them to the ugly

set of images. We then select all the images with the Trueskill value above 28, and assign

them to the beauty bin.
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(a) (b)

Fig. 5.4 Two types of augmentation: (a) rotation of the Street Views camera (based on
rotation); and (b) exploration of scenes at increasing distances (based on translation).

5.2.2 Augmenting the data

Partitioning of the data after evaluating the Trueskill scores on images is a lossy process.

By the time we filter images along minimum number of votes, and based on their trueskill

scores, we are left with 15,000 street-view images. It has been a well known problem in the

area of deep learning, that the algorithm’s performance is often limited by the amount of

clean curated data available to train on. Another real danger of training on limited data is

the phenomenon of overfitting. Overfitting happens when the model under consideration

is reasonably complicated with millions of parameters, but the data used to train it is not

sufficient to generalize the model’s inference. In such cases, the model over fits to the training

dataset whereby the model memorises the training data, to reduce the training error. But this

model is doomed to perform poorly on a generalized set of data. To avoid this particular set

of problems, I needed a way to enrich the current high confidence set of steetview images.

The enrichment needs to be such that we do not add noise to the dataset, but at the same time
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increase the diversity of the kind of samples the model is supposed to learn. This means we

need more images which are similar but not identical to the two partitions.

The solution I develop involves two approaches. First, we feed each scene’s location

into the Google Streetview API to obtain the snapshots of the same location at different

camera angles2 (i.e., at θ ∈ −30◦,−15◦,15◦,30◦). We assume that any image taken as a

variant of a beautiful image at different angles of rotations can safely inherit the label of

“beauty” since the field of view only changes by +−30◦. With this simple (yet conservative)

assumption we are able to immediately inflate our dataset by up to a factor of 5. However,

the resulting dataset is still too small for robust training. Therefore, again, we feed each

scene’s location into the Google Streetview API, but we now do so to obtain other scenes at

distance d ∈ {10,20,40,60} meters. This will greatly expand our set of scenes, but it might

do so at the price of introducing scenes whose beauty scores have little to do with the original

scene’s. This addition of noise may have an adverse effect on the deep learning algorithm’s

performance for detecting beauty. This addition of translational data, could be done using

some heuristics. Imagine a scene I translated in space by 10 meters. The newly acquired

scene I10, may be useful in our augmented dataset iff the translated scene I10 is visually

“similar” to the original scene I. The same heuristic metric can be used to either accept or

reject any image Im translated by m meters, into the augmented dataset. For this heuristic

test to work, we first need to device a way to compute the “similarity” measure between two

images I and Im. One well known way to evaluate image “similarity” is by represent them in a

high dimensional features space, obtained from a pre-trained neural network [ZIE+18]. This

is done by using the activations of a the last but two (or last but one) fully connected layer

of a trained convolutional neural network during a forward pass [BL15, LYHC15, VS16] as

features of the image. These activations are then treated as vectors in RN euclidean space,

such that they follow the distance and angle metrics. This allows comparison of images along

a similarity metric simply by comparing the cosine distances or Euclidean distance between

their feature vectors. For the sake of similarity of application, we use the best performance

version of a pre-trainied PlacesNet deep learning model [ZLX+14]. PlacesNet was trained

2Google streetview API allows the users to set the bearing and heading of the mast camera, used to acquire
the image
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on streetview images, and is trained with the end goal of classifying streetview images into

scene types, such as a beach, highway, garden etc.

For all scenes Im at increasing distance m ∈ {10,20,40,60} meters, we take only those

whose similarity scores with the original scene is above a threshold. In a conservative fashion,

we choose that threshold to be the median similarity between rotated and original scenes

(those of the first augmentation step). This assures that the translated images are at the very

least as similar to the original, as the rotated images.

Which scenes are more suitable for translation?

To make sure this additional augmentation has not introduced any unwanted noise, we

consider two sets of scenes: one containing those that have been taken during this last

step, i.e., the one with high similarity to the original scenes:(taken-set), and the other

containing those that have been filtered away because their similarity metric went above

the threshold:(filtered-set). Each scene is then scored with PlacesNet [ZLX+14] and is

represented with the five most confident scene labels, as per the original output of the model .

We then aggregate labels at set level by computing each label’s frequency on the taken-set and

on the filtered-set. Finally, we characterize each label’s propensity to be correctly augmented

as:

prone(label) = f r(label, taken-set)− f r(label,filtered-set) (5.1)

This reflects the extent to which a scene with a given scene label is prone to be augmented

or not, according to our decided threshold method. From Figure 5.5, we find that, as one

would expect, scenes that contain high amount of visual continuity over long stretches such

as highways, fields and bridges can be augmented at increasing distances while still showing

resemblances to the original scene. By contrast, scenes that contain peculiar features with

smaller continuity such as gardens, residential neighbourhoods, plazas, and skyscrapers

cannot be easily augmented. These scene types also tend to be found in high density parts of

the city in which visual diversity within short distances might well be experienced.
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Fig. 5.5 The types of scene that have greater propensity to be correctly augmented with
similar scenes at increasing distances.

5.3 Building a beauty Classifier

Augmentation Accuracy (Percentage)
None 63

Rotation 68
Rotation + Translation 64

Rotation + Conservative Translation 73.5
Table 5.1 Percentage accuracy for our beauty classifier trained on differently augmented sets
of urban scenes.
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Fig. 5.6 The complete architecture of the beauty classifier. The model contains 5 convolutional
layers, interleaved by max-pooling layers. Final layers contain fully connected layers and the
outcome Softmax layer.

Having this highly curated set of labeled urban scenes, we are now ready to train classifier

C with labels reflecting our beauty assessments. The challenge here is to understand if a deep

learning model is able to capture the essence of something as subjective as perceived urban

beauty.

As for classifier C, we use the CaffeNet architecture, a modified version of AlexNet [K+12,

SLJ+15] as seen in Figure 5.6. This has a conventional architecture with 5 convolutional

layers; interleaved with max pooling and normalization layers; and terminated by: (i) three

4096 dimensional fully connected layers interleaved with dropout layers [SHK+14] (the

dropout ratio is set to 0.5 to prevent over-fitting), and (ii) by a Softmax layer that classifies

the input image into one of two classes of beautiful(1) and ugly(0). The network is trained

for 30,000 epochs with ADAM optimizer3

Having C at hand, we now turn to training it. The training is done on a 70% split of the

data, and the testing on the remaining 30%. All this is done on increasingly augmented sets

of data. We start from our 15k images and progressively augment them with the snapshots

3The best performance model can be found here: https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/ATXYTP

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ATXYTP
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/ATXYTP
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obtained with the 5-angle camera rotations, and then with the exploration of scenes at

increasing distance d ∈ {10,20,40,60} meters. The idea behind this data augmentation is

that the model’s accuracy should increase with increasing levels of augmentation. Indeed it

does (Table 5.1): it goes from 63% on the set of original scenes to a value as high as 73.5%

on the set of fully augmented scenes, which is a notable increase in accuracy for this type

of classification tasks. Furthermore, our results match previous ones: for example, Dubey

et.al’s [DNP+16] model showed an accuracy of 70%, which is comparable to ours. The

comparable, and at times better, performance of this classifier with respect to the baseline

shows that 1) the notion of subjective beauty can be learn’t from a crowd’s participation and

2) the novel method of augmenting data, can make deep learning better accessible when the

data is sparse and of urban nature.

5.4 Implication of a beauty classifier

In this chapter RQ4 aimed at investigating the possibility of modelling subjective perceptions

of aesthetics in real world, using the opinions of a vast disconnected crowd.

We found that using a crowd based pooling of opinions about urban beauty, we can make

measurable progress towards quantifying the aesthetic in the context of urban scenes. This

too can be done at scale, with a proposed novel way of augmenting sparse datasets. However,

just capturing the perception is not enough to make any meaningful contribution towards the

urban science. A lot of work has been put in understanding the impact of the urban aesthetic

of citizen’s health, well being, economical vitality etc. The unanimous consensus points to

the fact that cites and their compositions deeply affect our health and well being. At this

juncture it is more valuable to first understand if the notion of beauty captured by our deep

learning model is analogues to that perceived by real humans. If that is indeed the case, it is

worth understanding what aspects of an urban scene are predictive of the perceived beauty.

This shall be of immense value to the practitioners of urban design, architecture and urban

activism.
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In the next chapter, we would explore exactly that. The guiding question is, can the learnt

representation of urban beauty be utilized to understand the predictive motifs of urban design

for beauty? Can these insights be used in a constructive way to improve existing urban scenes

? And finally, can such a framework be useful to the cause of urban design ?



CHAPTER 6

FROM CROWDS: RECREATING THE URBAN PERCEPTIONS

“What I cannot create, I do not understand” – Richard Feynman

Feynman said this insightful quote in context of understanding deeper concepts in physics.

If one cannot teach a concept, one does not understand it deeply. This notion, albeit

disconnected with the premise of my thesis, is as relevant as when it comes to building

models of any phenomenon. If a model cannot simulate reality, the model has not really

captured the essence of what it is trying to learn.

In the last chapter, we saw that a large scale crowd poll about perception of urban spaces,

can be used to train a machine learning model that can differentiate between an aesthetically

pleasing and unpleasant urban image. We also showed that despite the challenges, we can

enrich urban data, using certain spatial heuristics. This however did not address an important

question, that is, what is the validity of the learnt representation of beauty? Can we use the

model’s understanding of beauty to our benefit? Is the model actually learning what humans

perceive to be the signatures of beauty? All these questions entail from the final research

questions of my dissertation work:
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RQ5 Can machine learning models based on crowd opinions help us improve real spaces?

RQ6 How much do the suggested improvements align with the expectations from the

literature or the practitioners?

We would try to explore the answers to these questions in this chapter, by systematically

dissecting the model of beauty learned in the previous chapter. This, as per the definition

framed by Feynman, can be done by first using the model to generate what it “thinks” is

the notion of urban beauty. These generations can be used as recommendations of possible

improvements of any given un-aesthetic place. Next, I quantify these recommendations

using metrics designed around urban design literature. Finally, I validated these metrics and

recommendations through a user study.

This method of investigation essentially calls back to the DIKW pyramid, where , to

derive insights from data, you first create abstractions that come naturally to the structure of

data. In this case, the natural abstraction is the structure of the image itself. You are then

supposed to represent the knowledge in the abstractions in the form of metrics that could

motivate human wisdom. In this case, we believe that the beauty classifier we trained in

Chapter 5 has some pertinent knowledge learnt by training on the crowd sourced opinions

on beauty. In this chapter, we would develop metrics that operate on this knowledge, to

automatically generate wisdom inducing insights about how the essence of urban aesthetics.

6.1 Related work

Deep learning has been a hot topic and a tool to explore modelling of large datasets in

the recent days. The applications of this has seen a steady expansion in the fields other

than computer vision and pattern recognition. To list a few, deep learning has made steady

headway in natural science allied fields like drug discovery [GHS16], urban science [PZ17,

COR+16, LLCG17], health informatics [RWD+16]. The most common forms of deep
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learning models have been the convolutional neural nets, which we have seen in action in the

previous chapter. These convolutional neural networks are essentially layered hierarchical

structures of neurons, which can be trained to extract higher dimensional relationships

between features in data. This approach has allowed researchers to not only train models to

perform simple tasks like detecting objects [K+12] or detecting faces [RPC17], but it has

also enabled researchers to quantify much more subjective and intangible properties from

images, such as emotions [KLP13],sentiments [B+13] or ambiance of a place [R+15].

Since the introduction of Generative Adversarial Networks (GANs) [GPAM+14], deep

learning has been used not only to analyse existing images but also to generate new ones

altogether. This family of deep networks has evolved into various forms, from super

resolution image generators [LTH+17] to fine-grained in-painting technologies [PKD+16].

Recent approaches have been used to generate images conditioned on specific visual

attributes [YYSL15], and these images range from faces [TPW16] to people [MSG+18]. In

a similar vein, Nguyen et al. [NDY+16] used generative networks to create a natural-looking

image that maximizes the activation of a specific neuron in the discriminator. This method

was used to bring out the latent representation of an image, that maximizes its probability of

a particular class. In theory, the resulting image is the one that “best activates” the neuron

under consideration. In practice, it is still a synthetic template that needs further processing

to look realistic. Finally, with the recent advancement in Augmented Reality, the application

of GANs to generate urban objects in simulated urban scenes have also been successfully

shown [AMM+18].

These approaches motivated my work to use GANs, to further investigate the question

“What makes an urban scene beautiful?”. To that extent, I design a framework that utilizes

GANs in tandem with the beauty classifier, to reconstruct what the classifier presumes to be

beautiful. This is done in a way, that provides an incremental change in a target scene to

enhance its beauty. Finally, in accordance with the DIWW framework, I develop metrics to

better articulate the knowledge learnt by the model. These metrics are novel and are designed

around well known metrics in the literature pertaining to urban design and architecture.

Finally, I show that this pipeline indeed adds value in the day to day tasks of practitioners of
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urbanism and the output suggestions around aesthetics of spaces, indeed is perceived to be

more aesthetic compared to the input images.

6.2 GAN primer

A new breed of deep learning algorithms have allowed researchers to generate synthetic

data samples, based on knowledge and structure learnt form real data samples (x). These

family of algorithms are called Generative Adversarial Networks or GANs. GANS work

by simultaneously training a Generator G(z;θ) and a Discriminator D(x) model, who try

to out wit each other through training on real samples. The Generator tries to learn to

generate the most “real” looking synthetic samples by learning the distribution of x, and the

discriminator D(x) tries to learn to maximize the accuracy on guessing which sample comes

from a generator and which comes from the real data. At the peak performance, the generator

becomes so good, that the discriminator’s accuracy cannot go beyond 50% mark, implying a

totally random guess.

SamplerDataset

Generator

Discriminator

Co
de

 B
oo

k

Error (gradients)

Fig. 6.1 A simplified illustration of the architecture of a Generative Adversarial Network. The
red compunets are trained in tandem, one at a time. The discriminator D tries to maximize
accuracy to differentiate between I and the generated version Î. And the Generator G tries to
minimize accuracy of D to 50% thereby making Î ≈ I
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The training of this arrangements of neural networks happen in a lock step mode. A

simplified version of this arrangement can be found in Figure 6.1. The input to the generator

G(z;θ) is initialized using a prior like a gaussian, which essentially creates a codebook of

gaussian noise. More formally the discriminator D(x) tries to maximize assigning a correct

probability to each sample xi to be either from the generator G or the real dataset x. At the

same time, the generator G is trying to minimize the losslog(1−D(G(x))). Essentially G

and D are locked in a two player min-max game with the value function V (D,G) formalized

as :

min
G

max
D

V (D,G) = Ex∼p data (x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))] (6.1)

For the premise of my dissertation, I train a generator based on the structure seen at

Dosovitsy et.al [DB16a], on the entire dataset of streetview images obtained in accordance

to the strategies discussed in Chapter 5. The results of the capacity of this generator to

approximate streetview scenes can be see from Table 6.1.

6.3 Framework Design

Having the trained classifier before, the next step is to generate synthetic images , that

maximize the probability of that image being classified as beautiful. The key aim behind this

approach is to leverage the latent abstraction of beauty that the classifier has learn’t.

To achieve this, first we need to train a GAN model that can reliably generate synthetic

streetview scenes. A GAN consists of a N dimensional input layer that accepts a N

dimensional code. This code activates a series of fully connected and up-convolutional

layers. An up-convolutional layer performs an inverse operation of that of a convolutional

layer. It upsamples the input and then performs a de-convolution [DTSB15] on the result.

The architecture of this network is based on the work by Dosovitskiy et.al [DB16a] and

the code for reproducing the generator can be found on the author’s page1. I then train this

1https://lmb.informatik.uni-freiburg.de/resources/binaries/arxiv2016_alexnet_inversion_
with_gans/release_deepsim_v0.5.zip

https://lmb.informatik.uni-freiburg.de/resources/binaries/arxiv2016_alexnet_inversion_with_gans/release_deepsim_v0.5.zip
https://lmb.informatik.uni-freiburg.de/resources/binaries/arxiv2016_alexnet_inversion_with_gans/release_deepsim_v0.5.zip
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Original Generated

Table 6.1 Examples of our generator’s outputs. The original scenes and the generated ones
are shown side by side.
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f Beauty Maximized
Image

U1 U2 UN
. . .

Beauty

Ugly

Trained Generator Trained Classifier

Up-Convolution

Fig. 6.2 Architecture of the synthetic beauty generator. This consists of a generator of
synthetic scenes concatenated with a beauty classifier. The green block is the beauty
maximized template Î j, which is subject to forward and backward passes (red arrow) when
optimizing for beauty.

Symbol Meaning
Ii Original urban scene
Y Set of annotation classes for urban scenes (e.g.,

beautiful, ugly)
yi Annotation class in Y (e.g., beautiful)
Î j Template scene (synthetic image)
I′ Target Image
C Beauty Classifier

Table 6.2 List of notations

generator on the set Streetview images curated in Chapter 5. In the interest of reproducibility,

the trained models for the classifier and the generator, along with the serialized streetview

data can be found at https://dataverse.harvard.edu/dataverse/Facelift. The resulting generator

is able to generate synthetic streetview images, examples of which can be found in Figure

6.1.

After separately training this generator, which we denote as G, is then arranged in tandem

with the beauty classifier C, such that the output of G is fed directly into the classifier C.

The simulated arrangement of this framework can be see in figure 6.2 As a result, given the

two classes: ugly yi and beautiful y j, the end-to-end model transforms any original scene Ii

https://dataverse.harvard.edu/dataverse/Facelift
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of class yi (e.g., ugly scene) into template scene Î j that maximizes class y j (e.g., beautified

template scene).

More specifically, given an input image Ii known to be of class yi (e.g., ugly), our

framework outputs Î j, which is a more beautiful version of the input Ii (e.g., Ii is morphed

towards the average representation of a beautiful scene) while preserving Ii’s details. The

technique for mutating the input image in order to maximize the classifier’s output neuron is

based on “Deep Generator Network for Activation Maximization” (DGN-AM) [NDY+16].

Given an input image Ii, DGN-AM iteratively re-calculates the color of Ii’s pixels in a way the

output image Î j both maximizes the activation of neuron y j (e.g., the “beauty neuron”) and

looks “photo realistic”, which is done by conditioning the maximization to an “image prior”.

This is equivalent to finding the feature vector f that maximizes the following expression:

Î j = G( f ) : argmax
f

(C j(G( f ))−λ || f ||) (6.2)

where:

• G( f ) is the image synthetically generated from the candidate feature vector f ;

• C j(G( f )) is the activation value of neuron y j in the scene classifier C (the value to be

maximized);

• λ is a L2 regularization term.

Here the initialization of f is key. If f were to be initialized with random noise, the resulting

G( f ) would be the average representation of category y j (of, e.g., beauty). Instead, since f is

initialized with the feature vector corresponding to Ii, then the resulting maximized G( f ) is

Ii’s version “morphed to become more beautiful”.

The input image is also key. It makes little sense to beautify an already beautiful image,

not least because such beautification process would result in a saturated template Î j in our

framework. For this reason, to generate an image that maximizes the beauty neuron in the

classifier C, we restrict the corresponding input image to be in class yi (i.e., ugly scenes as

per the divisions in Figure 5.2). We do the opposite when maximizing the ugly neuron.
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We now have template scene Î j (which is a synthetic beautified version of original scene

Ii) and need to retrieve a realistic looking version of it. We do so by: i) representing each

of our original scenes in Step 1 (including Î j) as a 4096 dimensional feature vector derived

from the FC7 layer of the PlacesNet [ZLX+14]; ii) computing the distance (as L2 Norm)

between Î j’s feature vector and each of the original scene’s feature vector; and iii) selecting

the original scene most similar (smaller distance) to Î j. This results into the selection of the

beautified scene I j.

6.4 Motifs of urban beauty

Since original scene Ii and beautified scene I j are real scenes with the same structural

characteristics (e.g., point of view, layout), we can easily compare them in terms of presence

or absence of urban elements extracted by computer vision tools such as Segnet [BKC15]

and PlacesNet [ZLX+14]. That is, we can determine how the original scene and its beautified

version differ in terms of urban design elements.

6.5 Evaluation

The goal of this framework is to transform existing urban scenes into versions that: i)

people perceive more beautiful; ii) contain urban elements typical of great urban spaces;

iii) are easy to interpret; and iv) architects and urban planners find useful. To ascertain

whether the transformation meets the aesthetics criteria of people (RQ5) and whether the

recommendations from the transformation are useful RQ6, we answer the following granular

questions next:

Q1 Do individuals perceive the transformed scenes to be beautiful?

Q2 Does our framework produce scenes that possess urban elements typical of great spaces?

Q3 Which urban elements are mostly associated with beautiful scenes?

Q4 Do architects and urban planners find the insights about the transformation useful?
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Original (Ii)
Latent Beauty representation

(Î j)
Beautified (I j)

Table 6.3 Examples of the transformation process, which tends to add greenery, narrow roads,
and pavements. The three columns represent the original input image(Ii), generated template
(Î j), and the final beautified version (I j)
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6.5.1 Q1 People’s perceptions of beautified scenes

To ascertain whether the transformed scenes are perceived by individuals as they are supposed

to, we run a crowd-sourcing experiment on Amazon Mechanical Turk. We randomly select

200 scenes, 100 beautiful and 100 ugly (taken at the bottom 10 and top 10 percentiles of the

Trueskill’s score distribution of Figure 5.2). Our framework then transforms each ugly scene

into its beautified version, and each beautiful scene into its corresponding ‘uglified’. These

scenes are arranged into pairs, each of which contains the original scene and its beautified or

uglified version. On Mechanical Turk, we only select verified masters as our crowd-sourcing

workers (those with an approval rate above 90% during the past 30 days), pay them $0.1 per

task, and ask each of them to choose the most beautiful scene for each given pair. We make

sure to have at least 3 votes for each scene pair. Overall, our workers end up selecting the

scenes that are actually beautiful 77.5% of the times, suggesting that the transformed scenes

are indeed perceived to be more beautiful by people.

6.5.2 Q2 Are beautified scenes great urban spaces?

To answer that question, we need to understand what makes a space great. After reviewing

the literature in urban planning, we identify four factors associated with great places [EC13,

Ale77, Jac61] (Table 6.4): great places mainly tend to be walkable, offer greenery, feel cozy,

and be visually rich. Walkable streets are perceived to be safer and have been shown to

influence the vitality of a city street [Jac61]. Greenery too is linked to mental well being,

beauty, and closeness to nature [Ale77]. Openness, or the feeling of cosiness, is linked to

feeling of safety and exploration. Too much openness is linked to our evolutionary need to

become alert about dangers. Too little openness makes us weary about line of sights. This

means openness is linked to the feeling of safety in an inverted ‘U’ relationship. Finally, visual

complexity, or the measure of the diversity of physical objects visible in your perspective, is

also linked in an inverted ‘U’ fashion with our sense of beauty.

To automatically extract visual cues related to these four factors, we select 500 ugly

scenes and 500 beautiful ones at random, transform them into their opposite aesthetic qualities
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Metric Description
Walkability Walkable streets support people’s natural tendency to explore

spaces [EC13, QASD15, Spe12].
Green Spaces The presence of greenery has repeatedly been found

to impact people’s well-being [Ale77]. Under
certain conditions, it could also promote social
interactions [QOC14]. Not all types of greenery have to
be considered the same though: dense forests or unkempt
greens might well have a negative impact [Jac61].

Landmarks Feeling lost is not a pleasant experience, and the presence of
landmarks have been shown to contribute to the legibility and
navigability of spaces [Lyn60, QOC14, EC13, QPAC13].

Privacy-Openness The sense of privacy conveyed by a place’s structure
(as opposed to a sense of openness) impacts its
perception [EC13].

Visual Complexity Visual complexity is a measure of how diverse an urban
scene is in terms of design materials, textures, and
objects [EC13]. The relationship between complexity and
preferences generally follows an ‘inverted-U’ shape: we
prefer places of medium complexity rather than places of
low or high complexity [Ulr83].

Table 6.4 Urban Design Metrics

(i.e., ugly ones are beautified, and beautiful ones are ‘uglified’), and compare which urban

elements related to the four factors distinguish uglified scenes from beautified ones.

We extract labels from each of our 1,000 scenes using two image classifiers. First, using

PlacesNet [ZLX+14]. PlacesNet is a deep learning framework which is trained to detect the

type of place visible in an input image. The framework classifies the input image into one

of the 205 place type labels that it is trained on. We label each of our scenes according to a

classification containing 205 labels (reflecting, for example, landmarks, natural elements),

and retain the five labels with highest confidence scores for a particular scene. We then

manually classify each of these 205 labels into the 4 built environment types namely Walkable,

Architectural, Natural, and Landmark. The definitions of these 4 categories can be found

in the Appendix 2 (Chapter B). For example the label of ‘Plaza’ is considered a Walkable

label, whereas the label of ‘Cathedral’ is considered to be a Landmark. These categories are
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inspired by the guidelines for measuring urban design [EC13]. At the end of this manual

exercise, we are left with 117 PlacesNet labels belonging to the 4 built environment categories

(See Table B.1). All the remaining labels are discarded, since they do not fall into any of

these 4 categories. Second, using Segnet [BKC15], we label each of our scenes according to

a classification containing 12 labels. Segnet is trained on dash-cam images, and classifies

each scene pixel with one of these twelve labels: road, sky, trees, buildings, poles, signage,

pedestrians, vehicles, bicycles, pavement, fences, and road markings.

Fig. 6.3 Number of labels in specific urban design categories (on the x-axis) found in
beautified scenes as opposed to those found in uglified scenes.

Having these two ways of labelling scenes, we can now test whether the expectations set

by the literature describing metrics of great urban spaces (Table 6.4) are met in the Face-lifted

scenes.
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Fig. 6.4 Count of specific walkability-related labels (on the x-axis) found in beautified scenes
minus the count of the same labels found in uglified scenes.

H1 Beautified scenes tend to be walkable. We manually select only the PlacesNet labels that

are related to walkability. These labels include, for example, abbey, plaza, courtyard, garden,

picnic area, and park. To test hypothesis H1, we count the number of walkability-related

labels found in beautified scenes as opposed to those found in uglified scenes (Figure 6.3):

the former contain twice as many walkability labels than the latter. We then determine which

types of scenes are associated with beauty (Figure 6.4). Unsurprisingly, beautified scenes

tend to show gardens, yards, and small paths. By contrast, uglified ones tend to show built

environment features such as shop fronts and broad roads. Hence walkable scenes are indeed

associated with beauty.
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(a) (b)
Fig. 6.5 The percentage of beautified scenes (y-axis): (a) having an increasing presence of
sky (on the x-axis); and (b) having an increasing level of visual richness (on the x-axis).
The error bars represent standard errors obtained by random re-sampling of the data for 500
iterations.

H2 Beautified scenes tend to offer green spaces. We manually select only the PlacesNet

labels that are related to greenery. These labels include, for example, fields, pasture, forest,

ocean, and beach. Then, in our 1,000 scenes, to test hypothesis H2, we count the number of

nature-related labels found in beautified scenes as opposed to those found in uglified scenes

(Figure 6.3): the former contain more than twice as many nature-related labels than the latter.

To test this hypothesis further, we compute the fraction of ‘tree’ pixels (using Segnet’s label

‘tree’) in beautified and uglified scenes, and find that beautification adds 32% of tree pixels,

while uglification removes 17% of them. This points to the fact that presence of greenery in

a scene is indeed associated with the sense of beauty.

H3 Beautified scenes tend to feel private and ‘cozy’. To test hypothesis H3, we count the

fraction of pixels that Segnet labeled as ‘sky’ and show the results in a bin plot in Figure 6.5a:

the x-axis has six bins (each of which represents a given range of sky fraction), and the y-axis

shows the percentage of beautified vs. uglified scenes that fall into each bin. Beautified

scenes tend to be cozier (lower sky presence) than the corresponding original scenes.

H4 Beautified scenes tend to be visually rich. To quantify to which extent scenes are visually
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Pair of urban elements β1 β2 β3 Error Rate (Percentage)
Buildings - Trees -0.032 0.084 0.005 12.7
Sky - Buildings -0.08 -0.11 0.064 14.4
Roads - Vehicles -0.015 -0.05 0.023 40.6

Sky - Trees 0.03 0.11 -0.012 12.8
Roads - Trees 0.04 0.10 -0.031 13.5

Roads - Buildings -0.05 -0.097 0.04 20.2
Table 6.5 Coefficients of logistic regressions run on one pair of predictors at the time.

rich, we measure their visual complexity [EC13] as the amount of disorder in terms of

distribution of (Segnet) urban elements in the scene:

H(X) =−∑ p(i) log p(i) (6.3)

where i is the ith Segnet’s label. The total number of labels is twelve. The higher H(X),

the higher the scene’s entropy, that is, the higher the scene’s complexity. It has been

suggested that the relationship between complexity and pleasantness follows an ‘inverted

U’ shape [Ulr83]: we prefer places of medium complexity rather than places of low or high

complexity. To test that, we show the percentage of beautified scenes that fall into each

complexity bin (Figure 6.5b): we do not find a strong evidence of the ‘inverted U’ shape

hypothesis, in that, beautified scenes are of low to medium complexity, while uglified ones

are of high complexity.

6.5.3 Q3 Urban elements of beautified scenes

Logistic regression is often used to compute relationships between predictor variables and an

outcome variable which maps to {0,1}. The relationships between outcome variable and the

set of predictors can be interpreted through the values of the β coefficients.

To determine which urban elements are the best predictors of urban beauty and the extent

to which they are so, we run a logistic regression, and, to ease interpretation, we do so on
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one pair of predictors at the time:

Pr(beautiful) = logit−1(α +β1 ∗V1 +β2 ∗V2 +β3 ∗V1.V2) (6.4)

where V 1 is the fraction of the scene’s pixels marked with one Segnet’s label, say, “buildings”

(over the total number of pixels), and V 2 is the fraction of the scene’s pixels marked with

another label, say, “trees”. The result consists of three beta coefficients: β1 reflects V 1’s

contribution in predicting beauty, β2 reflects V 2’s contribution, and β3 is the interaction

effect, that is, it reflects the contribution of the dependency between V 1 and V 2 in predicting

beauty. We run logistic regressions on the five factors that have been found to be most

predictive of urban beauty [QOC14, EC13, Ale77], and show the results in Table 6.5.

Since we are using logistic regressions, the quantitative interpretation of the β coefficients

is eased by the “divide by 4 rule” [GH06]. This interpretation is based on Gelman’s

explanation about of relationship between logistic coefficients and the logit outcome variable.

This is an approximate way to interpret the relationship between predictors and outcome

variable in a logistic regression. We can take the β coefficients and “divide them by 4 to

get an upper bound of the predictive difference corresponding to a unit difference” in the

probability of the image being in the beauty class [GH06]. For example, take the results

in the first row of Table 6.5. In the model Pr(beauti f ul) = logit−1(α −0.032 ·buildings+

0.084 · trees+0.005 ·buildings · trees), we can divide - 0.032/4 to get -0.008: a difference

of 1 in the fraction of pixels being buildings corresponds to no more than a 0.8% negative

difference in the probability of the scene being beautiful. In a similar way, a difference of 1

in the fraction of pixels being trees corresponds to no more than a 0.021% positive difference

in the probability of the scene being beautiful. By considering the remaining results in

Table 6.5, we find that, across all pairwise comparisons, trees is the most positive element

associated with beauty, while roads and buildings are the most negative ones. These results

match previous literature in urban design of what makes spaces great, adding further external

validity to our framework’s beautification.
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Use case Definitely Not Probably Not Probably Very Probably Definitely
Decision Making 4.8% 9.5% 38% 28.6% 19%

Participatory Urban Planning 0% 4.8% 52.4% 23.8% 19%
Promote Green Cities 4.8% 0% 47.6% 19% 28.6%

Table 6.6 Urban experts polled about the extent to which the interactive map visualization
promotes: (a) decision making; (b) citizen participation in urban planning; and (c) promotion
of green cities

6.5.4 Q4 Do architects and urban planners find it useful?

Fig. 6.6 An end to end illustration of the framework.

To ascertain whether practitioners find the framework potentially useful, we build an

interactive map of the city of Boston in which, for selected points, we show pairs of urban

scenes before/after beautification (Figure 6.7)2. We then send that map along with a survey to

20 experts in architecture, urban planning, and data visualization around the world. Questions

were asked with a non-neutral response Likert scale (Table 6.6). That is because previous

work [BFT12, Moo08] has shown that such a scale: (i) pushes respondents to “take a stance”,

given the absence of a neutral response; and (ii) works best if respondents are experts in the

subject matter of the survey as responses of the “I don’t know” type tend to be rare (as it is

has been the case for our survey). The experts had to complete tasks in which they rated the

framework based on how well it supports decision making, participatory urbanism, and the

promotion of green spaces. According to our experts (Table 6.6), the tool can very probably

supports decision making, probably support participatory urbanism, and definitely promote

green spaces. These results are also qualitatively supported by our experts’ comments, which
2It is worth noting that the visualization is not claimed to be my original contribution. The design of the

interactive map was done by the first author of article 5. This visualization was christened as “Facelift”
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Fig. 6.7 Interactive visualization showing the transformed scenes in Boston.A more complete
map can be explored at www.goodcitylife.org/facelift

include: “The maps reveal patterns that might not otherwise be apparent”, “The tool helps

focusing on parameters to identify beauty in the city while exploring it”, and “The metrics

are nice. It made me think more about beautiful places needing a combination of criteria,

rather than a high score on one or two dimensions. It made me realize that these criteria are

probably spatially correlated”.

www.goodcitylife.org/facelift
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6.6 Conclusion

In this chapter, I designed and evaluated a framework that automatically beautifies urban

scenes by combining recent approaches of Generative Adversarial Networks and Deep

Convolutional Networks [DTSB15, DB16a, DB16b]. The key intention behind this arrangement

of diverse models was to leverage the notion of urban beauty learnt by the models in chapter 5.

This framework allowed us to mutate any given image so as to maximize its perceptual beauty.

This was indeed proven by the overwhelming agreement amongst Amazon mechanical

Turkers about the model’s outputs. This points to the fact that the opinions of a large crowd

can indeed give us insights about the key improvements to be done in a real urban space, so

as to make it more beautiful. This insight alludes to the fact the answer to RQ5 is indeed

“Yes”.

But just generating prettier versions of images is not enough, since that does not give

usable insights to practitioners; who in the end are responsible to execute the job of urban

design and planning. To allow this to happen, we need to translate the transformations done in

the image space, into metrics that can drive decision making. To achieve this, the framework

is able to explain which urban elements have been added/removed during the beautification

process. These additions/subtractions from the source image are then articulated in terms

of 5 important urban design metrics. After conducting a user study with practitioners in

the field, we found that the majority of participants positively reacted to the framework and

almost all of them saw a future where Artificial Intelligence could help them to incorporate

crowd’s perception into the design process, which answers the RQ6.

6.6.1 Limitations and biases

The framework is as good as its training data, and more work has to go into collecting reliable

ground truth data on human perceptions. This data should ideally be stratified according to

the people’s characteristics that impact their perceptions, such as gender, cultural background,

location, and language. The other main limitation is that generative models are hard to
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control, and more work has to go into offering principled ways of fine-tuning the generative

process.

Like any supervised deep learning based framework, this work is only able to learn what

is present in the data. Hence the method of acquiring annotations for urban images can

introduce huge biases in the model. The current model is trained on images acquired from

a previous study of public perception of the city [NPRH14]. However, their study allowed

anyone from the general public all around the world to annotate the images. This creates

difficulties in separating out the cultural influences on the annotator’s subjective opinion.

Moreover because the pair wise choice is simply done by clicking one of the two images, the

data might have noise introduced by non-serious participants clicking at whim. Such biases

are bound to be picked up by the deep learning model. One can argue that the preference of

our model for greenery , is a form of bias in the data. Another bias introduced because of

the data is the model’s lack of preference to pedestrians. This bias stems from the fact that

Google tries to remove most of the people from their street view images for privacy reasons.

Hence people, which makes up a major aspect of urban vitality, are more or less missing

from most dataset images.

Despite the drawbacks, I believe this approach towards augmented urban design may

very well be commonplace in the near future. After all, “we delight in complexity to which

genius have lent an appearance of simplicity.” [DB08] In the context of future work, that

genius is represented by future technologies that will help us deal with the complexity of our

cities.

6.6.2 Implications

In the works through my Ph.D., the idea of quantifying the subjective has always been

the central theme. The subjective is where most of our human experience takes place.

As Emanuel Kant instructs, “Look closely, the beautiful may be small”. And indeed, the

insights that drive the quantification of beauty in this part of my work, seem to be almost

intuitive. Concepts like greenery, walkable spaces, complexity, and open spaces seem drive

our perception of the aesthetic, which may be grounded in our evolutionary need to be safe
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and close to nature. Despite of the seemingly intuitive root causes, the implications of these

simple properties of urban spaces on mental and physical health seem to be far more crucial

in today’s world. At such a juncture, it is worth while to develop these frameworks to capture

human subjective experiences. Thankfully because of the convergence in our online and

offline lives, we are generating far more data about our offline experiences in the online

realm. Data generated from our interactions with different on-line services, may very well

improve our off-line lives.



CHAPTER 7

CLOSING NOTES

“The unity of all science consists alone in its method, not in its material ... It is

not the facts themselves which form science, but the method in which they are

dealt with.” - Karl Pearson

The guiding principle for this dissertation has been understanding how human subjective

opinions can be leveraged for social good. The aim was to advance the understanding

of how something as subjective as expression of support or perception of beauty, can be

quantified. I explored two realms of this problem, one dealing with groups of humans

forming communities around a supportive cause, and other looking at a vast set of un-related

people expressing their subjective opinions about urban aesthetics. In both cases, the key was

the set of methods used to tease out the signatures of these subjective qualities from data. To

that end, Karl Pearson’s quote is very apt and encapsulates the key contributions of my work.

Working with a framework, of first acquiring and curating Data, then building key

abstractions on top to capture the Information, then building metrics to extract the Knowledge

allowed me to build a pipeline to work with data from a diverse set of applications. The hope

is that this pipeline can be used to generate Wisdom that drives interventions

The work done in my dissertation is going to inspire the vision for my research in the

near future, and I would like to close this journey by walking through a few aspects of what I

imagine would be the path forward. I would also like to reflect on what has been done and

what remains to be done in the context of this dissertation.
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7.1 Reflection

The central thesis of my dissertation, as stated in Chapter 1 was as below:

Can we quantify properties of subjective nature, if the data is large enough, and

originates from human communities or crowds?

Being a vastly open ended problem, I decided to direct my efforts in two key directions

1) The regime of web scale data, where the subjective is quantified from the signals of online

interactions between connected users (communities) and 2) The regime where the web scale

data is a direct result of some subjective perception of vastly disconnected users(crowds).

In the first regime, I investigated the utility of online forums in providing social support

for people in distress. With RQ1 and RQ2 I explored the temporal dynamics of support

communities from the perspective of individual users. We find that a few high contributing

users, which are termed as superusers, are tantamount to the support dynamics and the health

of the community. They are important towards the cohesiveness of the community and

provide brokerage of social capital. There is also an overall propensity to help each other,

which increases with time and experience. With RQ3, I developed methods to quantify the

signatures of supportive interactions in the conversation structure on these communities,

using a novel way to perform triadic census of the network structure. Investigation in the first

regime allowed me to show that the exchange of support over a large connected community

can be quantified by analysing the different structural aspects of that community.

In the second regime, I investigated how online opinions of large disconnected crowds

about subjective properties could be used to quantify the subjective in the real world. With

RQ4, I showed that by using opinions of the crowds about urban beauty, we can train a deep

learning model that could differentiate between beautiful and ugly urban spaces to a high

degree of accuracy. RQ5 investigated the utility of this model, in not just recognizing beauty

but also recreate it and explain it through a set of literature driven metrics. These metrics



7.2 Open problems 111

are inspired from the field of urban planning and architecture, which are then validated

for accuracy and relevance by investigating for RQ6. Investigations in the second regime

allowed me to show that subjective properties, like the perception of beauty, can be indeed

quantified from opinions of disconnected crowds, and can be leveraged for interventions.

7.2 Open problems

Throughout this dissertation, I came across interesting problems which I would have loved

to investigate, but couldn’t in the interest of focus and time. I would like to enumerate a

few as an exercise in reflection. At the very least, I would like to discuss the problems and

illuminate them for further investigation by the community.

7.2.1 Triadic closures in conversation graphs

Triadic closure has been shown to be an important mechanism in the literature of social

networks [Gra77, MVF11] through which social ties get established. The mechanism has

also been widely explored as a measure to for recommendation systems [ST14, LTH+13].

Despite this wide prevalence in social networks, dialogue structures on reddit in the

context of social support seem to exhibit a different behaviour , as seen in Chapter 4. As

seen from the results in Appendix A, motifs that resemble a triadic closure are very rare in

either cases. However the precursors to a triadic closure, such as 201 variants, 111 variants

and 021 variants are all expressed with statistical significance in the baseline as well as

supportive conversations. Triadic closures have shown to be vital for information diffusion

in networks [BGV+16]. Hence investigating closures in dialogue structures on reddit could

lead to some interesting counter intuitive mechanisms.

7.2.2 Colouring ties in conversation graphs

In my dissertation I explored the utility of language in capturing the strength of ties

in a dialogue graph (as seen in Chapter 4). However, it is important to note that just
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measuring alignment between two exchanges might be resulting a loss of crucial information.

Linguistically, it would be worthwhile to capture the essence of dialogues along a multi-dimensional

scale, since that is how actual exchanges take place. To that end, it would be of value to

colour the links using affective components of an exchange between two people, such as

empathy, affection, trust, anxiety, animosity, friendship etc. These colours could further

help us develop methods to detect toxic behaviours online and capture the overall tone of a

discussion.

7.2.3 Exploring cultural biases in subjective perception

An important limitation in using the crowd’s opinion to quantify the subjective is the trade-off

between data volume and data bias. To train any reliable deep learning model, you need a

reasonable volume of data to train. This limits the amount of stratification one can do in the

crowd opinions along cultural, geographical and social lines. Stratifying data further could

lead to over-fitted models. But using the bulk of data as one monolithic chuck endangers

the model to learn the least common denominator in the subjective preferences. That means

the cultural nuances about the concept of beauty that enrich our world are all averaged out.

Indeed as seen in Chapter 6 the FaceLift model tends to associate foliage with beauty to

a high degree. There are methods in the literature to solve these problems, by teasing out

biases in the models by partitioning the data in a clever manner.

7.3 Future Outlook

In this Ph.D I aimed at exploring and exploiting the potential of machine learning, to

understand how the subjective can be sensed from web scale data. To that end, it is worth

discussing about how the methods I developed align with the research I intend to pursue.

In the future I would like to extend this work along two key dimensions which are

based on a shared theme "Capitalizing on the subjective perceptions to deliver impactful

interventions".
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7.3.1 Empathic healthcare

Improving healthcare to provide an empathic experience to patients in an economical and

scalable way is the most crucial challenge of 21st century. The world saw an explosive

growth in population during the baby boomer generation. This same cohort has now become

the largest ageing cohort in the history of the world. On account of this and the rise of

chronic diseases, the health care sector has seen unprecedented growth in the past decade1.

With growth, comes the challenges of scale. Despite ever increasing investment2, the UK’s

NHS still is riling under the pressure of rising patient numbers, dwindling staff and longer

wait times [May18]. Longer wait times also imply that doctors are on an average spending

less time with the patients. This has taken a serious toll on the doctor patient empathic

communication. It has been shown that the doctor patient relationship plays a vital role in

accuracy of diagnosis of the disease ,prognosis of the patient and overall satisfaction of the

patient [JBS+11, Ben91].

At such a juncture, there is a rising need to solve frictions along these points of contacts

for the NHS. At the same time, it is extremely important to provide psyco-social infrastructure

for this ageing population, especially at times when the ailments are chronic in nature, and

the social support structures are fragile. The vision for an empathic healthcare, puts forth

a framework where the psycho-social aspects of health are put at the centre of the system,

along with the biological well being. This can be done by re-engineering several pipelines,

through which a patient engages with the healthcare systems. This means that a treatment

plan is not just a relationship between the doctor and the patient, but involves a support

structure of both AI-driven agents, peers, online-volunteers and healthcare workers. My

work done with the Chronic Obstructive Pulmonary Disease community shows that patients

of chronic diseases tend to thrive as a part of an online social support community, and at

times can take up the mantle to provide crucial information [JSC+18]. My work with the

suicide watch support community also shows that there are quantifiable structures of support

1https://www2.deloitte.com/global/en/pages/life-sciences-and-healthcare/articles/
global-health-care-sector-outlook.html

2https://www.bbc.co.uk/news/health-46524257

https://www2.deloitte.com/global/en/pages/life-sciences-and-healthcare/articles/global-health-care-sector-outlook.html
https://www2.deloitte.com/global/en/pages/life-sciences-and-healthcare/articles/global-health-care-sector-outlook.html
https://www.bbc.co.uk/news/health-46524257
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which exhibit a patient centric structure of engagement. I foresee that with the help of A.I.

models trained on these empathic interactions, we could one day see virtual support groups

which are supported by the healthcare provider and allow self and group management of

chronic conditions. This would allow the healthcare providers to save costs in terms of lost

appointment times for patients of chronic conditions. But at the same time, it would provide

a true bio-psycho-social framework for chronic symptom management. Overall, I see that

empathic signatures in communications, can be learnt at scale, provided that we can pinpoint

where exactly such interactions are happening. And I think my work paves a path forward

for that to happen.

7.3.2 Perceptive urbanism

Urbanism is a term used commonly to describe works that deal with problems and mechanisms

that shape an urban environment. There has been a sharp rise in research in the field of

urbanism due to the age of open data. Many of these works look at open urban data about

socio-economic indicators in conjunction with social outcome variables like health [SBL+12,

VQC+15], well being [CSH+17], quality of air [MD03] etc. Some more inter-disciplinary

works have also shown that built environment in cities resonate with our personality and

perception of qualities like safety, richness and beauty [DNVZ+16b, DNP+16].Some other

studies have also shown that something as simple as presence of green canopy can be

correlated with reduced depression related prescriptions [HKR+18].

In the same vein, my work done on crowd based urban design, allowed me to leverage

perception of the crowds to improve urban spaces. I believe the most natural extension in this

case is utilizing these methods to explore further linkages between our urban environment

and our quantified self. Questions like "how does the city influence our mental health?"

or "how does built environment influence the air we breath?" are now within the reach of

data science. The possibility of linking perception driven metrics in urban spaces, with

socio-economic or health indicators is what I define as perceptive urbanism. This aspect of

urbanism could actually be immensely helpful in developing interventions with minimum

costs but maximum impact.
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7.4 Conclusion

In the hindsight, this work has been a result of a series of fortunate accidents which allowed

me to explore and exploit interesting topics in the fields of information retrieval, network

science and at times social sciences. Being a computer scientist in today’s age, I believe, is as

much an exercise in a broad understanding of today’s social problems, as it is about technical

details and methods to solve them. My Ph.D. has given me an unfettered opportunity to

spend my time and resources in broadening my horizons. I hope I keep the pursuit alive in

the due course of my career.
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APPENDIX A

APPENDIX 1: RARE ANCHORED MOTIFS IN SOCIAL SUPPORT

I evaluate the prevalence of all the Anchored Triadic motifs as defined in Chapter 4. As
explored by previous studies [SM15, SM12, HL76, HL71], the social-tie structures and
certain triadic motifs are predictors of social hierarchy in communities. Albeit these studies
looked at community structures of Apes and tribal populations, they act as a very peculiar
proxies for understanding how communities in the wild evolve. The important point to note
here is that graphs that emerge from conversations, may not be synonymous to the graphs that
form due to actual social ties. But in the context of a conversation, the interactions between
peers can be assumed to be a purely transactional tie.

The internet has opened up new mechanisms of formation of these ties. And at that, the
mechanisms seem to generate new patterns of conversations, based on the kind of interaction
the participants of a community perform. To that end both the supportive and baseline
communities exhibits a dearth of transitive triads like 030T and 210C, which are more
prevalent in real life communities with hierarchies

One of the most interesting outcome of this exercises, which I failed to pursue further
is the complete lack of triadic closures. Triadic closure has been a very important aspect
of studies around online social capital. The key premise here is that a weak tie can act as a
bridge between two disjoint nodes in a community. However, in the context of conversation
structures, this phenomenon seems to be completely absent from the picture.



138 Appendix 1: Rare anchored motifs in social support
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(6.d) (6.e) (6.f)

(7.a) (7.b) (7.c)

(8.a) (8.b) (8.c)

(9.a) (9.b) (9.c)

(10.a)

Fig. A.0 This figure lists out all the insignificant Anchored motifs, either by the virtue of rare
occurance (<5 mean motifs per bin) or by account of low Z-score.





APPENDIX B

APPENDIX 2: CATEGORIZATION OF PLACESNET LABELS

As discussed in Chapter 6 I classified the labels from Placesnet, a deep learning framework
to recognize the types of outdoor places [ZLX+14], into 4 distinct categories namely
Architectural, Natural, Landmarks and Walkable. These categories were picked up to
understand the effect of 4 broad classes of built and natural entities on urban beauty. The
definitions for the category descriptions were defined based on the guidelines from [EC13].

Definition 3 Walkable A scene from PlacesNet was defined to be walkable, if the scene is
perceived to facilitate people to walk.

Definition 4 Landmarks A scene from PlacesNet was defined to be a Landmark, if the scene
can be used to articulate, remember or communicate location relative to an object.

Definition 5 Architectural A scene from PlacesNet was defined to be Architectural, if the
scene can be described to be a part of the city’s built environment.

Definition 6 Natural A scene from PlacesNet was defined to be Natural, if the scene evokes
the feeling about being in proximity with nature.

Once the labels were classified, I developed metrics around the built environment of
a place, based on the frequencies of labels belonging to the four categories. A detailed
categorization of the scene labels into the four categories can be found in Table B.1.



142 Appendix 2: Categorization of PlacesNet labels

Architectural Walkable Landmark Natural
Apartment building Abbey Airport Badlands

Building Facade Alley Amphitheatre Bamboo Forest
Construction Site Boardwalk Amusement Park Canyon

Courthouse Botanical Garden Arch Coast
Drive way Corridor Amphitheatre Corn field
Door way Cottage garden Baseball Field Creek

Forest road Courtyard Basilica Desert (Sand)
Garbage dump Crosswalk Bridge Field (cultivated)

Golf course Fairway Castle Field (wild)
Highway Food court Cemetery Mountain

Hotel Forest path Cathedral Snowy Mountain
Inn Formal Garden Church Ocean

Ice skating rink Herb Garden Dam Orchard
Motel Outdoor Market Dock Pond

Office building Nursery Cemetery Rainforest
Parking Lot Patio Fire station Rice paddy

Railroad track Pavilion Fountain River
Residential neighbourhood Picnic area Gas Station Rock arch

Restaurant Playground Harbour Sand bar
Runway Plaza Hospital Sea Cliff

School House Patio Lighthouse Ski slope
Skyscraper Shopfront Mansion Sky

Slum Topiary garden Mausoleum Snow field
Supermarket Tree farm Pagoda Swamp

Outdoor swimming pool Veranda Palace Valley
Tower Vegetable garden Racecourse Wheat field

Water tower Yard Ruin Desert (vegetation)
Wind farm Rope Bridge

Ski Resort
Baseball stadium
Football stadium
Subway Station

Train Station
Temple

Wind mill
Table B.1 Classification of Places-net labels into the four categories.
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